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Abstract—ndustrial Cyber-Physical Systems (ICPS) have
emerged as a critical component in the industrial domain. To
facilitate seamless collaboration among massive devices, cloud-
edge computing architectures have emerged as a key enabler for
ICPS, leveraging distributed intelligence to orchestrate devices
and computational tasks. In cloud-edge computing, efficient task
offloading and resource management are essential for optimizing
task performance and reducing energy costs. However, conven-
tional centralized resource management strategies struggle to
satisfy the real-time, adaptability, and performance demands of
dynamic ICPS systems.ndustrial Cyber-Physical Systems (ICPS)
have emerged as a critical component in the industrial domain.
To facilitate seamless collaboration among massive devices, cloud-
edge computing architectures have emerged as a key enabler for
ICPS, leveraging distributed intelligence to orchestrate devices
and computational tasks. In cloud-edge computing, efficient task
offloading and resource management are essential for optimizing
task performance and reducing energy costs. However, conven-
tional centralized resource management strategies struggle to
satisfy the real-time, adaptability, and performance demands of
dynamic ICPS systems.I In this paper, we propose the Distributed
Transformer-based Actor-Critic (DTAC) algorithm to jointly
determine task offloading and resource management decisions in
cloud-edge computing networks, particularly for delay-sensitive
applications in ICPS. The DTAC algorithm integrates the power-
ful transformer model with the popular actor-critic architecture
to address the challenge of a hybrid high-dimensional action
space. We first train a centralized model to learn coordination
among user equipments (UEs) and then introduce a decentralized
transfer learning (TL) approach to efficiently adapt the central-
ized model into the DTAC framework. Using the DTAC model,
each UE can independently manage its local resources based
solely on local information, avoiding the significant signaling
overhead inherent in centralized approaches. Simulation results
demonstrate that DTAC not only outperforms other MARL
and TL schemes in both small- and large-scale scenarios, but
also exhibits strong generalization capabilities in inexperienced
settings. Furthermore, DTAC and decentralized TL approaches
significantly reduce training costs by 73% compared to other
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methods, making them more practical for ICPS deployment.
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I. INTRODUCTION

WITH the rapid development of communication technol-
ogy and the internet of thing (IoT), Cyber-Physical

Systems (CPS) have emerged to seamlessly integrate the
cyber world with the physical world by monitoring and
controlling physical entities through intelligent computing and
communication technologies [1]. Motivated by the CPS, the
intelligent devices have widely deployed in manufacturing sec-
tors, prompting a fundamental paradigm shift from traditional
industrial settings to the Industrial Cyber-Physical Systems
(ICPS) [1]–[7].

The ICPS enable real-time monitoring, coordination, and in-
tegration of massive physical devices, promising a framework
to provide sophisticated functions. In ICPS, the primary chal-
lenge then lies in the management of massive heterogeneous
interconnected devices in industrial environments. Towards
this end, cloud-to-edge-based ICPS has been proposed to
enhance connectivity, networked computing, and intelligent
control by leveraging existing cloud/edge technologies [6]–[8].
Within the cloud-to-edge-based ICPS, devices can benefit from
significantly enhanced computational and communication ca-
pabilities at reduced costs and latency. Within this framework,
cloud-edge computing plays a critical role in the intelligent
control of industrial devices [7]–[11]. Leveraging cloud-edge
computing, resource-constrained industrial devices can access
additional computational resources from other devices under
the management of a cloud server. This collaborative paradigm
reduces task execution delays, improves system-wide perfor-
mance, and lowers energy consumption [12], [13].

In cloud-edge computing networks, task offloading and
resource management are essential to selectively offload tasks
to edge servers and allocate appropriate communication and
computation resources for each task [14]–[23]. By jointly
optimizing offloading decisions and the allocation of commu-
nication and computation resources, both execution time and
energy consumption for user equipment (UEs) can be signifi-
cantly reduced, which is highly desirable. However, such joint
resource management inherently forms a challenging mixed-
integer nonlinear programming (MINLP) problem, involving
an integer component for computation placement and com-
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munication actions, as well as a nonlinear component for re-
source allocation. This MINLP problem introduces substantial
computational complexity, making conventional optimization
approaches impractical, particularly in scenarios with a large
number of devices. Recent advances in Deep Reinforcement
Learning (DRL) have demonstrated remarkable success in
solving decision-making problems. By learning adaptive poli-
cies through environmental interactions, DRL frameworks can
efficiently navigate the MINLP solution space, enabling better
task offloading and resource allocation strategies in dynamic
cloud-edge environments [24]–[36].

Within the management of massive industrial devices, there
are several requirements in the ICPS, including the real-time,
adaptability and performance requirements [1]–[7]. In cloud-
edge computing networks, the real-time requirement aims
at reducing the latency in deciding the task offloading and
resource management decisions for all UEs. The adaptability
requirement ensures that the cloud-edge computing network
can provide reliable service for UEs with varying numbers and
configurations. The performance requirement aims to optimize
various objectives across devices, such as execution time for
delay-sensitive tasks and energy cost for resource-limited UEs.

Considering these ICPS requirements, current DRL ap-
proaches face two problems in dynamic cloud-edge computing
networks: 1) Joint optimization of task offloading and resource
allocation across all UEs requires the DRL agent to operate in
a hybrid high-dimensional state-action space, comprising dis-
crete offloading decisions and continuous resource allocation.
Such a complex state-action space poses challenges to conven-
tional DRL schemes focusing on either discrete or continuous
action space. 2) Conventional multi-layer perceptron (MLP)
and Recurrent Neural Network (RNN)-based DRL models
suffer from performance degradation when scaling to large
networks due to their limited capacity to model complex state-
action space. Moreover, these DRL models struggle to adapt
to inexperienced scenarios with varying numbers of UEs due
to the fixed input-output mapping, resulting in inferior adapt-
ability [37]. 3) Conventional centralized DRL-based schemes
depend on frequent global state synchronization between UEs,
edge servers, and the cloud server. This leads to severe com-
munication delay caused by the additional signaling overhead,
particularly in large-scale cloud-edge computing networks.

To address the first and second challenges, we propose the
Transformer-based Actor-Critic (TAC) model, which integrates
the transformer architecture with an actor-critic framework.
For joint task offloading and resource allocation, the TAC
employs a hybrid actor that generates both the probability
distribution of task offloading decisions and the continuous
resource allocation strategy. These hybrid actions are then fed
into the critic to compute Q-values of each state-action pair,
which are then utilized to guide the learning of the hybrid
actions. To handle the issue of varying numbers of agents, the
transformer within the TAC efficiently captures relationships
across N UEs while ensuring the output vector consistently
includes resource management actions for all UEs, regardless
of changes in N. This design allows the TAC model to
seamlessly adapt to dynamic cloud-edge computing networks
with fluctuating numbers of UEs.

To address the third problem, we propose to execute task
offloading and resource management in a distributed man-
ner, which can mitigate the severe communication delays
caused by massive information exchange. Specifically, we
propose a novel decentralized transfer learning (TL) method
to transfer the centralized TAC model into a distributed
one while maintaining the performance. During centralized
training, the stacked-form joint state is adopted as global
information, thereby enabling the centralized TAC model to
manage task offloading and resource allocation for all UEs.
After centralized training, we propose a decentralized TL ap-
proach for each device to independently make task offloading
and resource management decisions based solely on local
information, eliminating the need for information exchange
between servers and UEs. Since both the joint state and the
local state share the same size in the last dimension, the
original TAC model can serve as the initialization point for the
decentralized model. This design allows the model to retain the
learned correlations across local states, significantly reducing
the parameters required for retraining, while enhancing both
convergence and performance. Moreover, unlike conventional
TL methods that focus on mimicking the TAC model’s actions,
we leverage the converged critic in centralized TAC to guide
the convergence of the distributed model.

A. Contribution and Main Results

To meet the real-time, adaptability, and performance re-
quirements of ICPS, a distributed task offloading and resource
management strategy is essential. In this paper, we propose a
Distributed Transformer-based Actor-Critic (DTAC) algorithm
designed to minimize both task execution time and energy
consumption for resource-constrained UEs in a distributed
manner. The main contributions are presented as follows:

• We propose the TAC architecture to address the joint task
offloading and resource management problem in dynamic
cloud-edge computing networks with a hybrid high-
dimensional action space. To handle the hybrid action
space, we introduce the hybrid actions of the actor, which
serves as the input of the critic to obtain Q-values. These
Q-values are utilized to guide the learning of both critic
and actor, enabling the model to iteratively enhance the
hybrid action decision. For the high-dimensional action
space and dynamic scenarios, we employ the transformer
to efficiently capture the intrinsic relationships between
the UEs while adapting to inexperienced scenarios.

• We propose a novel decentralized TL approach to ef-
ficiently train the DTAC model by utilizing the con-
verged centralized TAC model. Instead of minimizing
the disparity between the policies of the DTAC and
centralized TAC models, we leverage the learned critic
model to provide the appropriate gradient information
for training the DTAC model. This decentralized TL
approach can significantly enhance both the convergence
and performance, resulting in a performance level to that
of the centralized TAC model.

• We evaluate the performance of DTAC in various sce-
narios, including its generalization capability in un-
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trained environments. Compared with the state-of-the-
art Heterogeneous-Agent Proximal Policy Optimization
(HAPPO) in the MARL domain and conventional TL
approaches, the DTAC approach demonstrates great gen-
eralization capability, and can achieve much better per-
formance in cloud-edge computing networks with both
various scales of coverage area and different numbers of
UEs.

B. Related Work

The concept of task offloading and resource management
was introduced to enable UEs to better utilize the communi-
cation and computation resources of edge servers, optimizing
task execution time while saving energy [12], [13]. Due
to the integer programming nature of this problem, DRL
has emerged as a popular solution [24]–[36]. In [26], a
deep deterministic policy gradient (DDPG)-based dynamic
resource allocation strategy has been proposed to efficiently
address the resource allocation problem with continuous state-
action space. Similarly, by combining DDPG with hierarchical
learning, the resource management problem in cloud-edge
computing-based vehicular networks is addressed in [28].
In [29], the asynchronous advantage actor–critic algorithm
is adopted to manage edge computing resources, enhancing
cloud-edge computing performance while addressing security
and privacy issues. For task offloading with integer actions,
a double deep Q-network (DDQN)-based method is proposed
to minimize energy consumption while considering the task
delay constraint [24].

Other than using conventional MLP, transformer-based DRL
schemes have recently been proposed for the task offload-
ing problems to capture the correlations across UEs [32]–
[36]. Unlike conventional MLP, the transformer can leverage
the attention mechanism to better capture these correlations,
thereby enhancing joint offloading and resource management
decisions, particularly in large-scale and dynamic scenarios.
For instance, in [32], a transformer-based Proximal Policy Op-
timization (PPO) approach was proposed for edge computing
scenarios to jointly optimize offloading decisions, demonstrat-
ing superior performance and faster convergence compared to
conventional DRL schemes. Furthermore, to facilitate model
transfer across different environments, transformers have been
integrated into both queuing delay prediction and actor net-
works due to their ability to handle varying input and output
dimensions [34].

The aforementioned studies focus on optimizing offload-
ing decisions in a centralized manner, resulting in signif-
icant signaling overhead and limiting their applicability in
ICPS scenarios [10], [11]. Recently, multi-agent reinforcement
learning (MARL) has achieved notable success in distributed
decision-making problems. Through centralized training and
decentralized execution (CTDE), agents can learn to cooperate
in a distributed manner [38], [39]. In conventional CTDE
approaches, the local states of all agents are concatenated into
a global state to provide global information during centralized
training, enabling agents to learn cooperative behavior using
only local states during distributed execution. However, this

approach cannot capture the intrinsic relationships between the
states of the UEs and does not align well with the transformer
architecture, leading to severe performance degradation [40].
Furthermore, in dynamic scenarios with varying numbers of
agents, the concatenated global state must be padded with
zero elements to create a fixed-length vector, causing a loss
of positional information.

In this paper, we consider decentralized and centralized
cloud-edge computing scenarios as related tasks, and propose
a decentralized TL approach to transfer the centralized model
into a distributed model. Recently, TL has shown remarkable
proficiency in efficiently training new models for related
tasks by leveraging prior knowledge, such as experiences and
strategies, particularly in the DRL domain [41]–[44]. Utilizing
this knowledge, agents can effectively learn to address current
tasks that share similarities with past tasks. In the communica-
tion domain, TL leverages the correlation and similarity among
tasks to significantly reduce training costs while enhancing
convergence [42]. However, most TL approaches focus on
student models that mimic the behavior of teacher models,
such as actor models, while overlooking the critical role of
the critic model. In the proposed decentralized TL, since
both the joint state and the local state of the transformer
share the same size in the last dimension, we propose to
utilize the converged TAC actor model as the initialization
point, thereby retaining the learned correlations across UEs to
enhance convergence. Moreover, we further propose to employ
the TAC critic model to guide its convergence towards a
better direction, significantly improving the performance. After
the decentralized TL, UEs can coordinate with each other
in a distributed manner using only local information while
maintaining a great performance level to that of the centralized
model.

C. Outline

The remainder of this paper is organized as follows. In Sec.
II, the system model and the problem of interest are described.
In Sec. III, the decoupled optimization problem is formulated,
and the proposed DTAC algorithm is illustrated. In Sec. IV,
the performance of DTAC algorithm is evaluated. Finally, the
paper is concluded in Sec. V.

II. SYSTEM MODEL AND PROBLEM OF INTEREST

A. System Model

As shown in Fig. 1, we consider a three-level cloud-edge
computing network composed of a single cloud center, a set
of edge servers K and a set of UEs N . Each edge server is
assumed to be deployed with a Base Station (BS) and covers
multiple UEs. The set of UEs associated with edge server
k ∈ K is denoted as Nk ⊂ N . For simplicity, we assume
that UEs n ∈ Nk can only communicate with their associated
edge server k. There are L channels in the network, in which
each channel has the same bandwidth. The communication
between UEs, edge servers and the cloud center is illustrated
in Fig. 1. All UEs associated with the same edge server
share the same channel resources, and each UE considers the
transmission of other UEs using the same channel resource
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Fig. 1. The considered multi-user cloud-edge computing network with single
cloud center, multiple edge servers and different types of UEs. The UEs
associated with the same edge servers share the same channel resources, and
the communications among edge servers and the cloud center share the same
channel resources.

at the same time as interference. For simplicity, we consider
that the communications of each edge server do not interfere
with that of other edge servers due to non-overlap coverage
of edge servers. Note that only edge servers can communicate
with the cloud center, and tasks offloaded to the cloud center
should be routed through the edge server as a transit.

In the considered cloud-edge computing network, we con-
sider only UEs to have the task demand. The set of tasks is
denoted as M. Each computation task m ∈ M is represented
by the vector (Sm

i , Cm, Sm
o ), in which Sm

i and Sm
o denote

the size of input data and the output computed data of task
m, respectively, and Cm denotes the required CPU cycles
per bit of input data [45]. In order to ensure successful
joint resource allocation and decision-making for offloading
and caching in the cloud-edge computing network, we divide
time into rounds, as illustrated in Fig. 2. Each round begins
with each UE assigned a single task randomly selected from
the set of tasks M. Note that different types of UE have
their own independent task arrival distributions, resulting in
varying expected numbers of different types of tasks arriving at
different types of UEs. After receiving the assigned task, UEs
make task offloading decisions, i.e., compute locally, upload
to the edge server or further upload to cloud center. If a task
is offloaded, the edge server or cloud center will process the
task and send the result back to the UE n, requiring the UE to
expend energy En

u,t to upload the task. Alternatively, if a task
is computed locally, the UE n can compute the task result
locally without communication cost and delay, but with the
expense of additional computation cost En

c,t. Each round ends
only when all tasks have been computed, and the duration time
of round t is denoted by Tt, which equals the maximum task
execution time among all UEs.

Considering the real-time requirement for ICPS, we intro-
duce the distributed cloud-edge computing network, in which
each UE should independently execute the joint resource man-

Fig. 2. Illustration of the workflow for the cloud-edge computing system. The
duration of each decision time interval equals to the maximum computing time
among UEs.

agement, comprising task offloading position, local computa-
tion CPU frequency, communication channel selection, and
corresponding transmission power. This distributed approach
eliminates the need to collect the task and resource status
of all UEs, thus avoiding signaling overhead. In particular,
since we consider a distributed scenario where all actions are
decided independently, each UE can only control its local
computation frequency and transmission power between itself
and its associated edge server. Meanwhile, the transmission
power between edge servers and the cloud center, as well as
the computation frequency of offloaded tasks, are controlled by
the cloud center. Regarding the offloading decision, a task can
either be computed locally, at the associated edge server, or
at the cloud center. If the task is offloaded, the transmission
channel between the UE and the edge server must also be
determined by the UE to mitigate interference among UEs.
Notably, as the task is offloaded to higher levels, computational
resources become more abundant, but this comes at the cost
of increased signaling overhead and communication delay.

In this paper, we aim at minimizing both the task execution
time and the total energy cost of local UEs due to their limited
energy resources. In the following, we will illustrate the details
of the considered cloud-edge computing scenario and problem
of interest.

B. Resource Management

For local communication resource, we denote the ratio of
transmission power of each UE n to its maximum transmission
power PUE as at = {ant | n ∈ N}, subject to ant ∈ (0, 1].
Each UE n can select one of L orthogonal channels lnt ∈
{1, 2, . . . , L} for communication, aiming at mitigating the in-
terference among UEs. For the computation resource, since the
computational resource linearly relates to the CPU frequency,
we consider the computation resource as the CPU frequency
(in CPU rounds per second) in the following [20], [45]. The
ratio of the local calculation frequency of each UE to the max-
imum CPU frequency FUE is denoted as bt = {bnt | n ∈ N},
subject to bnt ∈ (0, 1]. In particular, the calculation frequency
and the transmission power of edge servers and the cloud
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center are fixed as FE , FC and PE , PC , respectively. For the
caching resources, we assume that only the edge servers have
the capability to store the results of offloaded tasks. By caching
the results of tasks, the edge servers can directly provide the
cached task results to corresponding UEs, eliminating the need
for redundant computations. The storage capacity of each edge
server k is denoted as Sk (in bits). The edge server can cache
the result of offloaded task m only when the current cache
capacity is sufficient, in which the caching decisions of all
edge servers are controlled by the cloud center.

Since the UEs have only limited computation resource,
offloading the tasks to the associated edge server or the cloud
center can significantly reduce the tasks computing time. The
offloading decision of UE n at the round t is given by

xn
t =

 2, if task is offloaded to the cloud center ,
1, if task is offloaded to nearest edge server ,
0, otherwise

. (1)

In particular, when xn
t = 2, since UEs n ∈ Nk can only com-

municate with its edge server k, the task will be transmitted
from the edge server first, and then to the cloud center.

C. Computation Model

For the computation time, we first consider the caching
status of edge servers. In the considered cloud-edge computing
network, the edge server can cache the result of the offloaded
task when its current cache capacity is sufficient and the task
has been offloaded, i.e., xn

t ∈ {1, 2}. The cache decision
of each edge server k for each offloaded task m is decided
independently using existing caching placement strategies,
e.g., the least recently used and the least frequently used [46].
Then, we denote the cached results of tasks in edge server
k as ckt (m) ∈ {0, 1}, where ckt (m) = 0 represents task m
has not cached in edge server k at round t. Subsequently, the
constraint of cache capacity is given by Sk ≥

∑
m

ckt (m)Sm
o .

Then, we can derive the task computation time T1,t ={
Tn
1,t | n ∈ N

}
according to the offloading decision xn

t and
caching status ckt (m), i.e.,

Tn
1,t =


Sm
i Cm

bknFUE
, if xn

t = 0,

(1− ckt (m))
Sm
i Cm

FE
, if xn

t = 1,
Sm
i Cm

FC
, if xn

t = 2,

, (2)

and the corresponding energy cost Ec,t for local computed
tasks of UEs is given by [20]

En
c,t =

{
κSm

i Cm(bnt FUE)
2, if xn

t = 0,
0, otherwise ,

, (3)

in which κ is the effective capacitance coefficient depending
on the CPU chipset of UEs.

D. Communication Model

For the communication time, we first obtain the instanta-
neous data rates between UEs, edge servers and the cloud

center, which are given by

Rt(n, k) =

 B log(1 +
an
t PUE |h(k,n)|2

σ2+Pn
I,t

), from n to k,

B log(1 + PE |h(k,n)|2
σ2 ), from k to n,

Rt(c, k) =

{
B log(1 + PE |h(k,c)|2

σ2 ), from k to c,

B log(1 + PC |h(k,c)|2
σ2 ), from c to k,

, (4)

where PUE , PE , and PC denote the power of UE n, edge
server k and the cloud center, respectively. B denotes the fixed
bandwidth of each channel. h(i, j) represents the channel gain
between transmitter i and receiver j. For simplicity, we assume
that each device has the same power for Gaussian noise, σ2.
Note that only transmissions from UEs to edge servers are
interfered with by other UEs within the same coverage area,
while transmissions initiated by edge servers and the cloud
center are conducted through Time Division Multiple Access
(TDMA) without interference. The power of the interference
signal Pn

I,t for UE n is given by:

Pn
I,t =

∑
m∈Nk
m ̸=n

1 (lnt = lmt ) amt PUE , (5)

in which Nk denotes the set of UEs associated with the same
edge server as that of UE n, and 1 (lnt = lmt ) represents that
UE m offloads the task using the same channel as UE n.
Subsequently, the energy cost Eu,t for offloading the tasks
from local UE n to the associated edge server is given by

En
u,t =

{
0, if xn

t = 0,

ant PUE
Sm
i

R(n,k) , if xn
t ∈ {1, 2}, , (6)

in which ant PUE is the transmission power and Sm
i

R(n,k) repre-
sents the transmission time. Then, we denote the total energy
cost En

t of each UE n at time t as

En
t = En

u,t + En
c,t. (7)

Then, the task communication time between UEs and edge
servers T21,t = {Tn

21,t|n ∈ N} can be derived as

Tn
21,t =

{
0, if xn

t = 0,
Sm
i

R(n,k) +
Sm
o

R(k,n) , if xn
t ∈ {1, 2}, , (8)

and the communication time between edge servers and the
cloud server T22,t = {Tn

22,t|n ∈ N} is given by

Tn
22,t =

{
0, if xn

t ∈ {0, 1},
Sm
i

R(k,c) +
Sm
o

R(c,k) , if xn
t = 2.

. (9)

E. Queuing Model
Then, since the task offloading and computation procedure

is sequentially executed over time, we denote the queu-
ing matrix for computation on edge servers as Q11,t =
{q11,t(n1, n2)|n1, n2 ∈ N} and on the cloud center as
Q12,t = {q12,t(n1, n2)|n1, n2 ∈ N}, where

q11,t(n1, n2) =

 1, if xn1
t = xn2

t = 1 and n1, n2 ∈ Nk,
1, if n1 = n2,
0, otherwise ,

q12,t(n1, n2) =

 1, if xn1
t = 2 and xn2

t = 2,
1, if n1 = n2,
0, otherwise ,

.

(10)
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Then, we denote the queuing matrix for communication as
Q2,t = {q2,t(n1, n2)|n1, n2 ∈ N}, which is given by

q2,t(n1, n2) =

 1, if xn1
t = xn2

t = 1 and n1, n2 ∈ Nk,
1, if xn1

t = 2 and xn2
t = 2,

0, otherwise ,
. (11)

In particular, Q11,t,Q12,t and Q2,t represent that UE n1 and
n2 needs to wait for each other to complete task computing
and communication through a sequential manner. Finally, we
can obtain the duration time Tt of each round t as

Tt =∥T1,t(0) +Q11,t · T1,t(1)
+Q12,t · T1,t(2) +Q2,t · T21,t(1) + T22,t(2)∥∞

, (12)

where Tt(x) = {Tn
t if xn

t = x else 0|n ∈ N} represents
a part of matrix Tt comprising by the elements of specific
offloading decision x.

F. Objective Function

In cloud-edge computing networks, a swift task execution
is crucial to meet the demand of delay-sensitive applications.
In the meanwhile, since UEs with limited resources cannot
handle excessive energy demands for every computing task,
maintaining low energy cost is equally important. In this paper,
we aim to optimize both the task execution performance of the
cloud-edge computing network and energy consumption, while
adhering to the constraints of cache, computation, and com-
munication resources. By denoting xt = {x1

t , . . . , x
N
t }, lt =

{l1t , . . . , lNt }, at = {a1t , . . . , aNt } and bt = {b1t , . . . , bNt }, and
letting x = {xt}Tt , l = {lt}Tt , a = {at}Tt and b = {bt}Tt ,
the optimization problem can be formulated as

minimize
x,l,a,b

lim
T→∞

1

T
·

T∑
t=1

(ω1Tt + ω2

N∑
n=1

En
t )

subject to:
an
t ∈ (0, 1] , bnt ∈ (0, 1] , xn

t ∈ {0, 1, 2}, lnt ∈ {1, 2, . . . , L}

, (13)

in which ω1 and ω2 denote the weight of the average task
execution time Tt and the total energy cost of all UEs∑N

n=1 E
n
t , respectively.

III. DTAC ALGORITHM

In this paper, we propose the DTAC algorithm, in which
a centralized TAC is first trained to coordinate the task
offloading and resource management decisions of all UEs,
and a decentralized TL is then proposed to efficiently transfer
the converged centralized transformer-based model into a
distributed one. In the following, we will sequentially demon-
strate the centralized training, the network architecture and
loss function of the TAC model, the proposed decentralized
TL and the DTAC model.

A. DRL Model Formulation

In this section, we illustrate the Partially Observable Markov
Decision Process (POMDP) of the considered cloud-edge
computing network within both centralized training and de-
centralized TL. In the POMDP, each agent first observes
the environmental state, makes the offloading and resource
management decision, and then receives the reward.

A.1 State
As aforementioned, the transformer has the feature that

the number of outputs keeps the same as inputs utilizing the
encoder-decoder architecture. By introducing the transformer
to address the high-dimensional state and action space, we
define the state of each UE and aggregate them to form
the agent’s state as input of the TAC model. Since the
communication time of the task computed locally is always
given by Tn

2,t(0) = 0, we propose the state of each UE n as

snt = {PUE |h(k, n)|2, T ∗,n
1,t (0), T

∗,n
1,t (1),

T ∗,n
21,t(1), T

∗,n
1,t (2), T

∗,n
22,t(2)} ∈ R6,

(14)

in which T ∗,n
1,t (x), T

∗,n
21,t(x), T

∗,n
22,t(x) denotes the value of Tn

1,t,
Tn
21,t and Tn

22,t of (2), (8) and (9) given by xn
t = x, ant =

bnt = 1, respectively. Specifically, T ∗,n
1,t (0), T

∗,n
1,t (1), T

∗,n
21,t(1),

T ∗,n
1,t (2), T

∗,n
22,t(2) represent the lower bound of computation

and communication time for computing locally, offloading to
edge servers and cloud center without the interference and
queuing of other UEs, respectively. In particular, each local
state snt takes both the task status and resource information
for local UE, edge servers and cloud center into consideration,
thereby providing sufficient information for making indepen-
dent task offloading decisions. PUE · |h(k, n)|2 represents the
power of the received signal at the associated edge server k.

Accordingly, the joint state for centralized TAC agent st is
given by

st = {snt }Nn=1 ∈ RN×6. (15)

A.2 Action
In the considered cloud-edge computing network, each UE

should decide its own offloading decision xn
t ∈ {0, 1, 2},

transmission channel lnt ∈ {1, 2, . . . , L} and corresponding
transmission power ant ∈ (0, 1] and calculation frequency
bnt ∈ (0, 1]. During centralized training, the joint action
{xt, lt,at,bt} ∈ RN×(L+5) of all UEs is decided centrally
using the global state st. In particular, we use the probability
px,t, pl,t to determine the final offloading decision and channel
selection xt, lt. Subsequently, the overall action of the TAC
model is denoted as

At = {px,t, pl,t,at,bt} (16)

A.3 Reward
As our goal is to minimize both the execution time Tt

and energy cost Et in each round t under the joint caching,
communication, and computation resources constraints, we
propose a vector-form reward for each UE to enhance the
sample efficiency. Towards the objective function, we use the
negative weighted value of task execution time and energy cost
as the reward, which is given by:

rt = {−ω1 · {Tn
t }n∈N , −ω2 · {En

t }n∈N } ∈ R2N . (17)

Here, ω1 and ω2 denote the weight of execution time Tt

and energy cost En
t , respectively. Towards this multi-objective

problem, a conventional approach is to sum up the rewards of
different objectives in a scalar. However, such an approach
will flatten the model gradient and increase the risk for con-
vergence to local optimums [47]. Considering the transformer
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Fig. 3. Architecture of the TAC model. Actor takes the joint state st as input
to obtain action At. Critic takes both joint state st and action At as input
to obtain Q-values Q (st, At). The hidden state is first passed through each
encoder, followed by each decoder in a sequential manner. In particular, pos
serves as the position embedding.

architecture of DTAC, we propose a vector-form reward. For
the local reward of each UE, we divide it into two parts
rnt = {−ω1T

n
t ,−ω2E

n
t }. Subsequently, we stack the task

execution time and energy cost for all UEs into a vector-form
reward rt instead of using the scalar-form objective function
as a reward, i.e., ω1Tt + ω2

∑N
n=1 E

n
t . This mechanism can

enable the critic to evaluate the individual Q-value of each
UE, thereby avoiding the flattened gradient issue and leading
to improved sample efficiency and convergence [48].

Through this reward design, the convergence performance
of TAC can be significantly enhanced, and the optimization
problem in (13) can be addressed when the proposed TAC
model converges.

B. Transformer Architecture

As aforementioned, we introduce the transformer architec-
ture in the proposed TAC algorithm instead of the widely used
MLP in other DRL approaches, which has two-fold reasons.
From the perspective of the input-output dimension, given the
input state dimension st ∈ RN×6, the transformer ensures the
action dimension At ∈ RN×(L+5) regardless of the number
of UEs N . In contrast, conventional MLP requires flattening
the joint state into a one-dimensional vector of length 6 · N
to capture the correlation among local states snt [49]. Due
to the mobility of UEs, the number of UEs in the cloud-edge
computing system is highly dynamic, leading to a time-varying
value for N . Since the size of the input vectors for MLP
depends on N , it cannot be applied in dynamic scenarios with
varying numbers of UEs. Furthermore, MLP faces challenges
in calculating the joint action for all UEs since it is difficult to
represent this in a one-dimensional vector format. For MLP,
directly transitioning its one-dimension output vector At ∈
RN(L+5) into a two-dimension action At ∈ RN×(L+5) may
encounter severe performance degradation since it requires
reshaping the output in a way that may not preserve the spatial
and temporal relationships inherent in the input. The flattened
input and output can result in the loss of local dependencies
between UEs, thereby hindering the performance. From the
perspective of architecture, the MLP captures the correlation of
each element of input, which includes a significant amount of
irrelevant information and neglects the topology of the cloud-
edge computing system. In contrast, the transformer efficiently

captures the inherent correlations across UEs through adap-
tive attention mechanisms. Additionally, the transformer can
incorporate the system topology by using position embedding,
further enhancing its ability to model the relationships between
the components.

The TAC architecture is illustrated in Fig. 3. In the actor
network, the joint state st is passed through each encoder in
a sequential manner, while position embedding pos serves as
position embedding. In particular, since the UEs associated
with the same edge server exhibit coupling computation and
communication time when offloading xn

t ∈ {1, 2}, we adopt
the id of associated edge server k of each UE n ∈ Nk as
the position embedding to capture the intrinsic relationships
among UEs. Then, the output of encoders are passed to the
decoders, and then output the probability px,t = {pnx,t}n∈N ∈
RN×3 of each offloading decision xn

t ∈ {0, 1, 2}, the prob-
ability pl,t = {pnl,t}n∈N ∈ RN×L of each offloading de-
cision lnt ∈ {1, 2, . . . , L}, and directly output the value of
at = {a1t , . . . , aNt } and bt = {b1t , . . . , bNt } for all UEs.

In particular, other than sampling actions from the prob-
ability px,t, we select the action with maximum probability
as the offloading decision in a deterministic manner, i.e.,
xt = argmax

xn
t ∈{0,1,2}

px,t and lt = argmax
lnt ∈{1,2,...,L}

pl,t, instead of using

the probability to sample actions. The reason is two-fold. First,
the output of the actor px,t, pl,t also serves as the input of critic
network, which is used to evaluate the Q-value of each state-
action pair Q (st,At) and guides the convergence direction
of action during training. Moreover, we further propose a
vector-form Q-value as similar to the vector-form reward
rt. However, in the high-dimensional action space, randomly
selecting action xt ∈ RN×3, lt ∈ RN×L according to the
probability distribution px,t, pl,t will hinder the evaluation on
the Q-value space. Since there are (L+3)N types of offloading
actions that can be obtained from certain probabilities, the
random sample approach would significantly increase the
complexity of training data collection and lead to a much
lower convergence rate. In contrast, the proposed deterministic
approach can address this issue of high-dimensional action
space by providing a direct mapping between px,t and xt, pl,t
and lt.

Second, since the critic network takes the action probability
px,t, pl,t as input and passes the Q -value to guide the
convergence direction of the actor, randomly sampling action
may counterintuitively degrade the exploration ability of actor
and leads to convergence in unexpected local optimum. In
the random approach, the output Q -value Q (st,At) is the
expected value of reward with respect to the action probability,
and critic will guide the actor converge to those experienced
actions with largest reward in each state, resulting in the
probabilities converging to a one-hot vector. Such an approach
has poor exploration ability even using both ϵ-greedy and
Gaussian noise. In the proposed deterministic approach, the
TAC only needs to ensure that the probability of the action
with the maximum Q-value is higher than the others, rather
than maximizing this probability to approach one. Utilizing
the Gaussian noise, this approach can significantly enhance
the exploration capability and convergence.
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For the critic network, as presented in the black part of the
Fig. 3 each encoder takes not only the state st and position
embedding pos, but also the action probability px,t, pl,t and
allocation ratio at, bt as input. In particular, we take pt as
input of critic instead of xt since the gradient cannot be
directly passed through the non-differentiable argmax oper-
ation. Then, the critic outputs the Q-value {Qn(st, At)}n∈N
for all UEs. In particular, the Q-values {Qn(st, At)}n∈N aim
to evaluate the task execution time and energy cost of each UE
n, in which all experienced data can be utilized to accelerate
the convergence. Finally, since we aim at minimizing the max-
imum task execution time at each round as presented in (12),
the maximum Q-value among UEs max

n
{Qn(st, At)}n∈N acts

as the loss function of actor network.

C. Algorithm Overview

Algorithm 1 Distributed Transformer Actor-Critic algorithm
Require: Initial variance of noise v, decay weight of noise ϵ, rounds per episode L,

actor network, critic network.
1: Collecting data:
2: for Round t ≤ L do
3: Obtain action probability pn

t according to state st for each UE n
4: Select the actions with maximum probability using Gaussian noise, an

t =
argmax pn

t + N (0, v) for each UE n
5: Receive reward vector rt for all UEs, and store the experience {st,pt, rt}

into memory
6: Centralized Training:
7: while Centralized model has not converged do
8: for U times updating per episode do
9: Randomly sample a batch of experiences {st,At, rt}

10: Output the Q-values of all UEs through critic, and update critic parameters
using critic loss in (18)

11: Take the maximum Q-value as actor loss (19) to update actor parameters
12: Update the variance of Gaussian noise every episode v = v · ϵ
13: Decentralized Transfer Learning:
14: Create a copy of the centralized TAC model π∗ as the DTAC model π′

15: Change the attention procedure from
(

QKT√
dk

)
V to

(
I√
dk

)
V

16: while Actor loss in (19) has not converged do
17: Randomly sample a batch of experiences {st,At, rt}
18: Obtain the output At of DTAC model π′

19: Minimize the actor loss in (19)
20: Distributed Execution:
21: for Each UE n ≤ N do
22: Obtain action An

t using only the local state snt and the converged DTAC model
π′ to manage the joint resources independently

The training procedure of the proposed TAC algorithm
is illustrated in Fig. 4, and the detailed outline presented
in Algorithm 1. In the following, we illustrate the training
procedure from the perspective of the centralized training
for TAC model and the decentralized TL for DTAC model,
respectively.

C.1 Centralized Training for TAC
During centralized training, the centralized TAC agent first

gathers the states of all UEs as st =
{
s1t , . . . , s

N
t

}
, and then

determines the offloading decision xt, transmission channels
lt, and resource allocation at, bt. In particular, Gaussian
noise is introduced in the action probabilities px,t and pl,t
of all UEs to enhance the exploration ability during training.
Subsequently, the TAC agent receives a reward rt from the
environment and stores the experiences st, xt, lt, at, bt, and rt
in memory for subsequent training iterations. After collecting
sufficient experiences, the critic network initially processes

the vector-form reward rt of all UEs to evaluate their Q-
value Q (st, At) and provides estimated gradients for the actor,
resulting in faster convergence rates compared to using only
scalar-form rewards. The maximum value of Q (st, At) is then
utilized to update the model parameters of the actor network
through gradient descent. Given that the Q-values are intended
to accurately assess the task execution time and energy cost
of all UEs, we employ the Mean Squared Error (MSE) loss
function as the critic’s loss., i.e.,

Lcritic =
∑
n∈N

(Q (st, At)− rt)
2 (18)

in which Q (st, At) denotes the Q-value representing the
expected reward of both task execution time and energy
cost, given the action px,t, pl,t, at, bt in the specific state
st of all UEs. In particular, we introduce pt instead of xt

to address the problem that the argmax function is non-
differentiable, which enables the gradient of critic can be
passed to the actor for gradient descent. With the convergence
of the critic network, it can evaluate the Q-value Q (st, At)
more accurately, and provide a better approximated gradient
of the non-differentiable objective function Tt and En

t .
Subsequently, the actor can utilize the gradient

∂maxn Q (st, At) /∂x to efficiently optimize the offloading
policy. The loss function of actor is given by,

Lactor = ∇ππ (At | st)∇At [ω1 max
n

Q (st, At)1,: |At=π(At|st)+

ω2

∑
n

Q (st, At)2,: |At=π(At|st)]−
∑
n∈N

ωsS [π (At | st)] ,

(19)
where Q (st, At)1,: and Q (st, At)2,: represent the evaluated
task execution time and energy cost given specific state st
and action At, respectively. In particular, maxn Q (st, At)1,:
represents the evaluated value of Tt since we take the maxi-
mum task execution time among agents as the duration time
of round t.

∑
n Q (st, At)2,: represents the total energy cost of

all UEs. π (At, st) denotes the actor model. ωsS [π (At, st)]
represents the entropy-loss of the current policy given state st
as similar to that in the conventional Soft Actor-Critic (SAC)
algorithm, which is introduced to better explore the state-arm
space during training.

C.2 Decentralized TL for DTAC
After the centralized training of TAC model, we propose

the decentralized transfer learning approach to transfer the
centralized TAC model to the DTAC model, which can decide
action independently using only local state of each UE. In the
centralized TAC model, the multi-head attention mechanism
aggregate the global information among UEs

Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (20)

in which Q,K, V are the query, key and value of the joint
input state st of all UEs, respectively. In particular, the value
of

(
QKT

√
dk

)
[i,j]

represents the attention weight of UE i paid

on the UE j. Through such attention mechanism, each UE
can make better resource management decision using not only
local state but also information of other UEs.
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Fig. 4. Illustration of the TAC procedure. The critic network uses collected data to train and enhance the evaluation ability on Q-values, and the actor network
takes the maximum value of Q-values as a loss function to perform gradient descent. First, the TAC model is trained to optimize the resources management
of all UEs in a centralized manner. Then, the converged TAC model is further trained into a DTAC model by reducing the weight of context information of
other UEs, and then is applied for resource management in a decentralized manner.

In the proposed DTAC, we aim to enable the independent
decision ability for all DTAC agents. Therefore, each DTAC
agent n should only pay attention to its own state snt instead
of taking the joint state st into consideration, and make local
action An

t independently without the requirement of global
information. According to (20), when deciding the action of
UE i, the centralized TAC model gathers the information
of other UEs using the weight

(
QKT

√
dk

)
[i,j]

. In the proposed

DTAC model, we transfer the procedure of attention block that
only utilizes the value V and ignores the query Q and key K,
enabling the ability for independent decision using only local
state for all UEs,

Attn(Q,K, V )′ = I · V. (21)

In (21), each UE only pays attention to its individual state
snt while ignoring the information of others, enabling each
UE to decide task offloading and resource management in-
dependently. In particular, we focus on transferring the ac-
tor model of DTAC during decentralized TL while keeping
the centralized critic model unchanged. Instead of the MSE
loss between the policies of DTAC and TAC model widely
applied in conventional TL approaches, we propose to train
the DTAC model using the converged critic network in the
aforementioned TAC model, which is given by

L
′
actor = ∇ππ

(
A

′
t, st

)
∇′

At

[
ω1 max

n
Q

(
st, A

′
t

)
1,:

∣∣∣∣
An

t =π(An
t |snt )

+

ω2

∑
n

Q
(
st, A

′
t

)
2,:

∣∣∣∣∣
An

t =π(An
t |snt )

 −
∑
n∈N

ωsS
[
π
(
A

′
t, st

)] (22)

Here, A′
t =

{
A1

t , . . . , A
N
t

}
represents the stacked distributed

actions of each UE, in which each local action An
t is deter-

mined based only on local information π (An
t | snt ). Upon the

convergence of the DTAC model, each UE n can indepen-
dently make resource management decision An

t using only its
local state snt .

The reason for introducing the converged critic in (22)
is two-fold. First, the centralized actor of TAC also aims
to maximize the expected Q-value estimated by the critic.
Therefore, by leveraging the accurate gradient information
provided by the converged critic model, the DTAC model can
effectively optimize its parameters towards a better direction
compared to the MSE loss. Second, the MSE loss only
encourages decentralized models to replicate the behavior of
the centralized TAC without providing additional inherent
information, i.e., the underlying system dynamics or the in-
teraction between UEs. Therefore, using MSE loss makes the
DTAC model more likely to converge to a local optimum, e.g.,
An

t = 1
n

∑
n A

∗,n
t . Moreover, using MSE loss for behavior

cloning further encounters severe issues when data is limited.
Since the behavior cloning mainly relies on the experience
during decentralized TL, it performs well only within the
state distribution of this experience. However, during practical
testing, any deviations can cause compounding errors, leading
to poor performance in real environments [50].

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the proposed TAC algorithm by
comparing it with other methods. In the following, we first
introduce the simulation setup, and then present the detailed
performance evaluations under different scenarios.

A. Simulation Setting

In simulations, the number of UEs associated with each
edge server follows the uniform distribution, in which their
positions follow a two-dimensional uniform distribution taking
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the position of the edge server as center. Edge servers are
uniformly distributed on a fixed-radius circumference around
the cloud center. The parameters of cloud-edge computing
network and hyper-parameters of DTAC are presented in Table
I and Table II, respectively.

TABLE I
CLOUD-EDGE COMPUTING NETWORK PARAMETERS 1

Parameters Value
Radius of edge server {200, 300, 600} meters

Radius of Cloud Center {300, 400, 800} meters
Number of edge servers 6 or 8

Number of UEs within an edge server {3, 4, 5}
Number of types of tasks M = 200

Number of types of UEs 6

Total Bandwidth 80 MHz
Total Computation Resources 86.4 or 115.2 GHz

Transmission Power PC , PE , PUE 40, 30, 23.9 dBm
Distribution of input data size [5, 20]Mbits

Distribution of output data size [2, 40]Mbits

Distribution of CPU rounds [600, 1200]

TABLE II
HYPER-PARAMETERS OF DTAC

Parameters Value Parameters Value
Learning rate 2 · 10−5 Number of rounds 600

Optimizer AdamW Entropy coefficient ωs 0.01

To present a comprehensive comparison, the following ap-
proaches are used to evaluate the performance of the proposed
DTAC algorithm.

• HAPPO: We introduce the HAPPO as the baseline of
conventional MARL approaches, in which the popular
RNN is deployed. For the POMDP setting of HAPPO,
the reward of each UE n is given by

rnt = ω1Tt + ω2

N∑
n=1

En
t , (23)

which corresponds to the objective function presented in
(13) and shares the same value among UEs. In particular,
designing a UE-specific reward, e.g., ω1Tt +ω2E

n
t , may

lead to performance deterioration in our simulations. In
local state of HAPPO, we incorporate the id of each UE
n and its associated edge server k for identification,

snt = {n, k,PUE |h(k, n)|2, T ∗,n
1,t (0), T

∗,n
1,t (1),

T ∗,n
21,t(1), T

∗,n
1,t (2), T

∗,n
22,t(2)} ∈ R8.

(24)

Finally, we take the concatenation of local states as the
global state during centralized training

st,g = {s1t , s2t . . . , sNt , 0, 0, . . . 0} ∈ R8·Nmax , (25)

in which we take zero vector as the padding of st,g to
ensure the application of HAPPO in scenarios with the
number of UEs ranging from Nmin to Nmax.

• TL: We introduce the TL as the baseline of conventional
TL approaches. In the TL, we apply the same local

state as that of HAPPO in (24), and take the same actor
model in the HAPPO as the agents’ model in TL. During
centralized training, we apply the converged centralized
TAC model as the teacher model to generate the labeled
data, and take the TL model as the student model to learn
the optimal actions of the teacher centralized TAC model
using MSE loss

LTL =
1

|B|
∑
t∈B

(
{An

t }n∈N −A∗
t

)2
(26)

in which B denotes the sampled batch. {An
t }n∈N is the

joint action of the student TL model using local state of
each UE, and A∗

t is the action of centralized TAC model.
In particular, TL has the same labeled data of that during
training the DTAC model.

• TL transformer: We also introduce a TL approach that
adopts the same model as that of the TAC approach for
a better comparison. The only difference between this
approach with the proposed DTAC approach is that we
optimize the distributed actions of the DTAC models
using the MSE loss illustrated in (26).

• Random: We also adopt the random approach to serve as
the worst performance among approaches. In the Random
approach, both the offloading actions xn

t and the channel
selections lnt for all UEs are randomly selected from xn

t ∈
{0, 1, 2} and lnt ∈ {1, 2, . . . , L}, respectively. The ratio
of communication power ant ∈ (0, 1] and computation
frequency bnt ∈ (0, 1] are uniformly distributed.

B. Performance Metrics

Considering performance requirement for resources-limited
UEs in ICPS, the following metrics are used to evaluate the
proposed DTAC.

• Average task execution time: We demonstrate the average
task execution time among rounds in each episode to
evaluate the task performance of the proposed DTAC
approach

• Average energy cost: We demonstrate the average energy
cost among UEs in each episode to evaluate the energy
performance of the proposed DTAC approach.

• Weighted reward: We demonstrate the cloud-edge com-
puting network performance including both energy cost
and task execution time to evaluate the overall perfor-
mance of the proposed DTAC approach. The weighted
reward is the negative value of objective function, which
is given by

− 1

T
·

T∑
t=1

[
ω1Tt + ω2

N∑
n=1

En
t

]
(27)

C. Performance Comparison

In this section, we first evaluate the proposed DTAC in
scenarios comprising one cloud center, 5 edge servers, and
a variable number of UEs associated with each edge server,
ranging from 4 to 6. The performance comparison on av-
erage task execution time, the average energy cost per task
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Fig. 5. Performance comparison between the proposed DTAC and other approaches in scenario with 5 edge servers, in which the coverage radius of edge
server is 200m and that of cloud center is 300m.. (a) illustrates the average task execution time comparison; (b) illustrates the average energy cost per task;
(c) illustrates the weighted reward corresponding to the objective function − 1

T
·
∑T

t=1 ω1Tt + ω2
∑N

n=1 E
n
t .
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Fig. 6. Performance comparison between the proposed DTAC and other approaches in scenario with 7 edge servers, in which the coverage radius of edge
server is 300m and that of cloud center is 400m. (a) illustrates the average task execution time comparison; (b) illustrates the average energy cost per task;
(c) illustrates the weighted reward for the objective function − 1

T
·
∑T

t=1 ω1Tt + ω2
∑N

n=1 E
n
t .

and the weighted reward of objective function (13) across
different scenarios with varying numbers of UEs are illus-
trated in Fig. 5a, Fig. 5b and Fig. 5c, respectively. For the
average task execution time, the proposed DTAC approach
can significantly outperform both the TL and TL transformer
approaches, as well as the HAPPO approach widely applied
in MARL scenarios. In particular, though the centralized TAC
achieves better performance compared to DTAC, it requires
the global information for decisions, which cannot be applied
in distributed scenarios. For the average energy cost per task,
both the TL transformer and the proposed DTAC approaches
demonstrate the lowest energy cost, comparable to that of
the centralized TAC. Finally, since we aim at minimizing
the objective function in (13), we also present the weighted
reward − 1

T ·
∑T

t=1 ω1Tt + ω2

∑N
n=1 E

n
t in Fig. 5c. First, the

DTAC can achieve a similar performance as that of centralized
TAC using only local information and distributed action.
Second, concerning the increase in the number of UEs, only
the performance of HAPPO exhibits unstable degradation,
while the performance of other TL-based approaches degrade
linearly. Due to the concatenated global state padded with zero

element, conventional MARL approaches lose the position
information, resulting in the weakness on the generalization
ability in dynamic scenarios with varying numbers of agents.

Then, we consider a scenario with more edge servers and
more UEs, which evaluates the ability of each approach to
coordinate larger-scale UEs through a distributed manner. As
presented in Fig. 6, DTAC also demonstrates a substantial
reduction in task execution time and energy costs compared
to other distributed approaches, including HAPPO and TL
in this scenario with more UEs. In particular, TL using
transformer can save more energy compared to DTAC at a cost
with much worse task execution performance, which further
demonstrates that the utilization of the learned critic model can
significantly enhance the performance of decentralized TL. For
the weighted reward for objective function, the performance
difference among centralized TAC, DTAC and HAPPO is sim-
ilar to that presented in Fig. 5c. In particular, the performance
of both TL and TL using transformer approaches significantly
degrades in this large scenario, highlighting the limitations of
conventional TL methods in distilling a centralized policy for
larger-scale agent deployment into distributed policies. Such
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Fig. 7. Performance comparison between the proposed DTAC and other approaches in scenario with 7 edge servers and larger coverage, in which the coverage
radius of edge server is 600m and that of cloud center is 800m. (a) illustrates the average task execution time comparison; (b) illustrates the average energy
cost per task; (c) illustrates the weighted reward for the objective function − 1

T
·
∑T

t=1 ω1Tt + ω2
∑N

n=1 E
n
t .
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Fig. 8. Comparison on preference of each offloading action for different
approaches in scenario of Fig. 6.
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Fig. 9. Comparison on preference of each offloading action for different
approaches in scenario of Fig. 7.

a result further presents the high-efficiency and stability of
the proposed DTAC approach in scenarios comprising both
small-scale and large-scale agents.

In previous scenarios, we mainly focused on a small cloud-

edge computing network characterized by a limited coverage
area for both the edge servers and the cloud center. To evaluate
the DTAC in a larger cloud-edge computing network, we
double the coverage radius of both edge servers and cloud
center while keeping other setting as the same of Fig. 6.
As presented in Fig. 7a, the DTAC continues to outperform
other distributed approaches, while the HAPPO exhibits the
poorest performance, even worse than that of the Random
approach with the increase of number of UEs. Similarly,
the proposed DTAC can also save most energy cost and
obtains the best weighted reward, while the HAPPO achieves
worst performance in both energy cost and weighted reward.
Evidently, the significantly degraded performance of HAPPO
can be attributed to the expanded coverage of edge servers
and cloud center. With the larger coverage, both the transmis-
sion time and the required energy cost for offloading tasks
significantly increase, leading to an increasing demand for
distributed approaches to learn more intelligent policies that
decides to offload or compute locally based on its position, task
and resources status. However, the HAPPO fails to learn such
intelligent offloading policies for all UEs, resulting in severely
degraded performance in scenarios with larger coverage.

D. Action Comparison

TABLE III
ACTION SIMILARITY COMPARISON

Approaches
Scenarios

Small area Large area

TL transformer 0.103 0.028
DTAC 0.063 0.015

In this section, we further analyze the action preferences
of each approach to evaluate their learning performance and
discover the relationship between action preference and per-
formance. Since the offloading action decides the position of
task execution, it holds paramount importance for performance
in cloud-edge computing networks. Consequently, we mainly
focus on the offloading action preference in the following. We
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Fig. 10. The convergence comparison for different schemes in scenarios presented in Fig. 7 of the revised version.

present the offloading action preferences in scenarios of Fig.
6 and Fig. 7 in Fig. 8 and Fig. 9, respectively. In Fig. 8, the
HAPPO converges to the local optimum that offloads most of
tasks to the edge servers instead of intelligently offloading or
computing task locally, leading to degraded performance. For
the TL, it also suffers from the similar problem as that of the
HAPPO. On the contrary, the TL using transformer also learn
a similar distributed resource management policies as that of
TL, resulting in much similar performance presented in Fig. 6.
For the proposed DTAC approach, it can learn the intelligent
offloading policies to enhance the network performance using
only local information, which has similar offloading preference
to that of centralized TAC. Notably, the increased preference
on local computation of DTAC may relate to the unavailable
information of other agents. Since the execution time of
offloaded tasks are significantly impacted by the offloading
actions of other agents, reducing the preference on offloading
tasks may improve the network performance in distributed
scenarios.

Then, the offloading action preferences in larger area de-
picted in Fig. 7 are illustrated in Fig. 9 for comparison. For
the HAPPO, instead of offloading most tasks to edge servers
as presented in Fig. 8, it converges to either offloading to
the cloud center or compute at the local UEs. As previously
mentioned, the larger coverage area necessitates enhanced
learning capabilities in distributed approaches for intelligent
offloading or local computing, due to increased transmission
times and energy costs. Consequently, HAPPO fails to reach
the global optimum, resulting in significantly degraded per-
formance as illustrated in Fig. 7. In contrast, DTAC can learn
effective offloading policies similar to those of centralized
TAC approaches using only local information, thereby achiev-
ing much better performance than other distributed methods.
Notably, DTAC also emphasizes local computation preference,
as shown in Fig. 9, demonstrating that reducing task offloading
preference can enhance network performance in distributed
scenarios.

In particular, Table III further illustrates the action similarity
(using KL divergence) between the two best approaches in
previous simulations, TL transformer and DTAC approaches,
and that of the centralized TAC model. Compared to the
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Fig. 11. The generalization evaluation of the DTAC approach involves
applying the DTAC model, trained in scenarios with a smaller coverage area
as depicted in Figure 6, to scenarios with a larger coverage area illustrated in
Figure 7.

TL transformer, the proposed DTAC model achieves better
distributed resource management with higher similarity to
the centralized approach in both small-scale and large-scale
scenarios, resulting in enhanced performance.

E. Generalization Performance

Moving forward, considering the adaptability requirement
for ICPS, we evaluate whether the proposed DTAC can adapt
to inexperienced scenarios. We apply the DTAC model trained
in small-scale scenarios as depicted in Fig. 6 to large-scale sce-
narios as illustrated in Fig. 7. As Fig. 11 illustrates, compared
to the trained DTAC model, the DTAC model inexperienced
in this scenario can even achieve better performance when the
number of UEs is less than 30. When the number of UEs
increases, the DTAC model inexperienced in this scenario can
also achieve a good performance, differing only marginally
from that of the DTAC model trained in this scenario. Such
a result demonstrates that the DTAC has sufficient general-
ization ability to adapt to diverse scenarios that are not even
experienced during previous training.
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F. Training Cost

TABLE IV
MODEL COMPLEXITY

Models HAPPO Actor HAPPO Critic DTAC Actor DTAC Critic
Flops N · 577.4k N · 1038.5k N · 14.3k N · 14.5k

Parameters 799 k 1436 k 8.17 k 8.52 k

Finally, considering ICPS deployment, we compare the
training cost between the DTAC with other schemes. First,
the overall training cost is divided into two components:
the number of required training episodes and computational
complexity. The convergence results for centralized training
and decentralized TL are illustrated in Fig. 10a and Fig. 10b,
respectively. In centralized training, the TAC model, utilizing
the transformer architecture to efficiently capture correlations
across UEs, demonstrates a significantly faster convergence
rate and superior performance compared to HAPPO, saving
73% of training episodes. Note that Gaussian noise is intro-
duced in DTAC during centralized training to enhance explo-
ration of the state-action space, which may slightly reduce its
performance compared to decentralized TL and testing. For
decentralized TL, DTAC achieves more stable and efficient
convergence than the TL transformer approach, saving 78%
of training episodes. Since the only difference between DTAC
and the TL transformer lies in the loss functions (26) and
(22), this result further highlights that leveraging the converged
critic model effectively guides the decentralized model toward
better convergence.

For computational complexity, the floating point operations
per second (Flops) and model size for conventional MLP-
based HAPPO and transformer-based DTAC are summarized
in Table IV, in which N denotes the number of UEs. Since
TL transformer adopts the same model as DTAC and TL
adopts the same model as HAPPO, we compare HAPPO and
DTAC for instance. The number of parameters in HAPPO
model is much larger than that of DTAC, especially for critic
model that takes the concatenated form global state as input.
The above simulation results demonstrate that the proposed
DTAC requires substantially lower training costs compared
to conventional HAPPO and TL schemes, making it more
feasible for ICPS.

V. CONCLUSION

In this paper, considering the real-time requirements of
ICPS, we propose the DTAC algorithm for distributed cloud-
edge computing networks. The decentralized TL approach
enables each UE learn to independently optimize task of-
floading and resource management while mitigating signaling
overhead, leading to more efficient execution. To meet both
performance and adaptability requirements, we first integrate
the transformer with the actor-critic architecture in the cen-
tralized TAC model, effectively addressing the hybrid high-
dimensional action space and dynamic scenarios with varying
numbers of UEs. We then introduce a decentralized TL ap-
proach to transfer the centralized TAC model to the DTAC
model. In the decentralized TL, the centralized critic model is

used to guide the convergence of the DTAC model, enhancing
its performance in distributed scenarios.

Simulation results demonstrate that the proposed DTAC
can significantly outperform other MARL-based and TL-
based schemes in both small-scale and large-scale scenarios.
In inexperienced scenarios, DTAC also exhibits excellent
performance, highlighting its strong generalization capability.
Moreover, the proposed DTAC model and decentralized TL
approach substantially reduce training costs by 73% compared
to other MARL and TL schemes.
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