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Abstract— Next-generation wireless networks face a variety
of challenges, including fairness problems and high access effi-
ciency demand. The Media Access Control (MAC) layer plays
a key role in improving access efficiency and ensure fairness.
In this letter, we propose a new MAC protocol that utilizes
multi-agent reinforcement learning (MARL) algorithm based
on the multi-agent proximal policy optimization (MAPPO) to
address these challenges. However, implementing a centralized
training with decentralized execution (CTDE) paradigm in a
MAC protocol can lead to signaling overhead issues. Therefore,
we designed a joint action estimation method and periodic
updating parameters scheme that effectively alleviates the com-
munication overhead associated with CTDE. For comparison,
we adopt a fully decentralized framework with low signaling
overhead based on independent PPO (IPPO) algorithm. The
simulation results indicate that our proposed MAPPO-MAC can
outperform CSMA/CA and IPPO-MAC in both throughput and
fairness with reduced communication overhead.

Index Terms— Multiple access control protocol, online dis-
tributed learning, multi-agent deep reinforcement learning.

I. INTRODUCTION

WITH the emergence of the Internet of Things (IoT),
it has become crucial for next-generation wireless net-

works (NGWNs) to cope with such intensive demands while
also improving Quality of Service (QoS). The media access
control (MAC) layer is considered as a key layer in boosting
access efficiency, ensuring fairness, and avoiding collisions [1].
However, many conventional distributed MAC protocols rely
on randomization to mitigate collisions, such as carrier-sense
multiple access with collision avoidance (CSMA/CA) used in
Wi-Fi [2]. Although there have been numerous studies on
the optimization of CSMA/CA and its variants, the lack of
cooperation among stations (STAs) often leads to relatively
inefficient and severe fairness issues. Therefore, it is essential
to develop a new multiple access protocol at MAC layer to
meet the growing demands of QoS in NGWNs.

Recently, multi-agent reinforcement learning (MARL)
has shown promising results due to its ability to solve
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high-dimensional decision problems and quickly converge
to cooperative policies. Considering a multi-access network
where STAs aim to transmit to an access point (AP) inde-
pendently, the network can be modeled as a multi-agent
system where each STA is equipped with an agent to deter-
mine whether to access the channel on its own. As such,
some MARL-based MAC protocols have been proposed. For
instance, QMIX-advanced Listen-Before-Talk (QLBT) pro-
posed in [3] is designed to achieve higher throughput and
lower average latency than CSMA/CA. Based on MADDPG
[4], the work [5] proposes a MAC protocol for jointly learning
channel access policy and signaling policy, which achieves
excellent performance in terms of throughput.

The aforementioned works primarily focus on the central-
ized training with decentralized execution (CTDE) framework,
which employs the overall information of all agents during
training and ensures that each agent can independently infer
the optimal policy based on its local information. However,
most CTDE algorithms perform centralized training in a
simulated or laboratory setting, and each agent utilizes the
trained strategy in a real-world setting, resulting in a fixed
distributed policy that cannot adapt to high-dynamic wireless
networks. Conversely, in [3] and [6], the AP collects real-time
experiences for centralized training and iteratively updates the
distributed policy in an online way. However, these methods
incur significant signaling overhead, including training data
in the uplink and network parameters in the downlink. Thus,
frequent signaling exchanges between the AP and STAs can be
unrealistic since it would occupy too much channel resources.

In this letter, we design a MARL-based MAC protocol based
on the multi-agent proximal policy optimization (MAPPO)
algorithm [7], which is referred to as MAPPO-MAC protocol.
Our focus is on making the CTDE framework applicable to
practical wireless networks by reducing signaling overhead
in both the uplink and downlink. The main contributions are
summarized as follows:
• We propose MAPPO-MAC protocol to achieve max-min

fairness among STAs. It outperforms CSMA/CA and
IPPO-MAC which utilizes a fully decentralized frame-
work based on independent PPO (IPPO) algorithm [8],
in terms of network throughput and Jain’s fairness index.

• We propose methods to alleviate signaling overhead,
including the joint action estimation method and periodic
updating of policy parameters. The influence of update
interval on convergence performance is also discussed.

II. SYSTEM MODEL AND PROBLEM OF INTEREST

A. System Model
As illustrated in Fig. 1, we consider that N STAs attempt to

transmit packets to an AP in a time-slotted wireless network.
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Fig. 1. System model: multiple STAs attempt to transmit packets to AP via
a shared channel.

Each STA is assumed to be saturated1 and all equidistant
from the AP. To reduce redundant conflicts, STAs perform
carrier sensing before accessing the channel, and transmissions
are only permitted if the channel is perceived as idle. We
consider the classic collision model [9], where one packet
can be successfully decoded only if there are no concurrent
transmissions. After each successful transmission, the AP
will broadcast an acknowledgment (ACK), which is received
by STAs after a short inter-frame space (SIFS). Conversely,
if multiple STAs transmit simultaneously, then a NACK will
be broadcast to indicate a collision.

B. Problem Formulation

In this letter, we consider the max-min fairness object to
maximize the minimum throughput among STAs. By denoting
throughput of STA n as Thn, the optimization problem can
be formulated as

max
π

min
∀n∈{1,2,...,N}

Thn

s.t.
N∑

n=1

Thn ≤ 1 and Thn ≥ 0,∀n ∈ {1, 2, . . . , N}, (1)

where π denotes the access policy of all STAs.

III. MARL FORMULATION

A. Action

We define an
t as an action selected by the STA n at time

step t. Here an
t = 1 means that STA n transmits a packet for

Ld slots, and an
t = 0 means that it performs carrier sensing

for one time slot. Furthermore, we denote the joint action as
at =

[
a1

t , . . . , a
N
t

]
.

B. Local State

We first define the next time step t′ as the time slot t + 1
or t + Ld depending on the joint action at. After the action
an

t is executed, STA n can observe on
t′ ∈ {−1, 0, 1} at the

next time step t′, which represents collision, idleness and
successful transmission respectively. on

t′ can be determined
by ACK/NACK or the carrier sensing results. lnt′ = t′ − t

1The saturated condition is of more interest, with which network throughput
is pushed to the limit.

denotes the number of time slots that the action an
t lasts. The

exponentially weighted average (EWA) throughput of the STA
n is defined as:

T̂ h
n

t′ =

{
(1− βln

t′ ) · 1 + βln
t′ · T̂ h

n

t if (an
t , on

t′) == (1, 1),
βln

t′ · T̂ h
n

t otherwise,

(2)

where β is a discount rate. Note that T̂ h
n

t′ increases only if
STA n transmits successfully at time step t. Similarly, EWA
throughput of other STAs except n is defined as:

T̂ h
−n

t′ =

{
(1− βln

t′ ) · 1 + βln
t′ · T̂ h

−n

t if (an
t , on

t′) == (0, 1),

βln
t′ · T̂ h

−n

t otherwise.

(3)

The local observation of STA n at next time step t′ is defined
as cn

t′ ≜ [on
t′ , l

n
t′ , T̂ h

n

t′ , T̂ h
−n

t′ ]. We obtain the local state sn
t

by concatenating the local observations of past L time steps,
i.e., sn

t ≜ [cn
t−L+1, . . . , c

n
t ].

C. Global State

The global observation is defined as zt′ = [at, ot′ , lt′ , T̂ ht′ ],
where T̂ ht′ ≜ [T̂ h

1

t′ , . . . , T̂ h
N

t′ ]. Similar to the definition of
local state, the global state at time step t is represented as
St ≜ [zt−L+1, . . . , zt].

D. Reward Function

Each STA receives a reward after performing an action. To
guarantee the fairness, we assume the optimal policy is that
the STA with the least throughput occupies the channel and
other STAs wait, i.e.,

an∗

t =

{
1 if STA n == arg min T̂ ht,
0 otherwise.

(4)

We award the actions that are consistent with optimal policy
and punish those that are not. Hence the reward is defined as

rn
t′ =

{
1 if action an

t == an∗

t ,
−1 otherwise.

(5)

Therefore, the reward vector is obtained as rt′ ≜ [r1
t′ , . . . , r

N
t′ ].

IV. MARL-BASED MULTIPLE ACCESS ALGORITHM

The overall CTDE framework of MAPPO is shown in
Fig. 2. To be specific, an experience memory (EM) with
capacity D resides in AP for storing experience tuple
et = (St, st, at, rt′ , St′ , st′), which is obtained according to
Algorithm 1. After randomly sampling mini-batch experiences
from EM, AP performs centralized training and sends out
trained actor network parameters for updating the network in
STAs. In decentralized execution, each STA utilizes its actor
network to select an action based on the local state. In the rest
of this section, we first propose methods to alleviate signaling
overhead, followed by an introduction to the neural network
architecture and loss function of the proposed algorithm.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 14,2023 at 06:32:26 UTC from IEEE Xplore.  Restrictions apply. 



3252 IEEE COMMUNICATIONS LETTERS, VOL. 27, NO. 12, DECEMBER 2023

Fig. 2. An overall framework of MAPPO used in multiple access scenario.

A. Signaling Overhead Alleviation

1) Uplink Signaling: In order to train the neural networks
in AP, the experience tuple et needs to be collected at each
time step. AP can directly obtain the joint local state st′ and
global state St′ by observing the channel state or judging
whether a received packet is successful. The calculation of
rewards rt′ requires joint action. However, upon collision,
joint action at is agnostic because AP is unable to know
which STAs collide with each other. A direct approach is
that STAs send messages containing action information to
AP. This, nevertheless, causes extra uplink signaling overhead.
To avoid this overhead, we propose a method to estimate joint
action in the following.

Since AP sends out the network parameters Θold to STAs
for execution, AP knows the transmitting probability of each
STA n, i.e., πΘold

(an
t = 1 | sn

t ). Therefore, AP can construct
a matrix P t as

P t =

 πθold

(
â1

t = 0 | s1
t

)
πθold

(
â1

t = 1 | s1
t

)
...

...
πθold

(
âN

t = 0 | sN
t

)
πθold

(
âN

t = 1 | sN
t

)
 , (6)

and then the joint action ât = [â1
t , . . . , â

N
t ] can be sampled

from P t. In particular, if ∥ât∥1 ≥ 2, then output ât; otherwise
resample until ∥ât∥1 ≥ 2.

2) Downlink Signaling: For reducing the downlink data, the
parameters of actor networks Θ are shared among STAs. Even
so, different actions can be taken by STAs due to their different
local states. To avoid transmitting the actor parameters at each
time step, we introduce a periodic broadcasting scheme using
beacon packets that contain Θ. As shown in Fig. 3, STAs first
use random actions to explore until the experience memory is
full which occurs at time step TD. At this point, AP performs
centralized training and updates the neural network parame-
ters. Then, AP transmits a beacon packet to STAs in every TBc

time slots. The latest actor network parameters are included
in the beacon packet2 with the length of LBc time slots. Once
the network performance has converged, the AP will stop
centralized training, and does not need to broadcast the actor

2The IEEE 802.11ac [10] defines the beacon frame’s structure. Apart
from the mandatory fields, there is a free space available for storing weight
parameters. Moreover, the beacon interval, i.e., the periodic time to broadcast
the beacon frame, can be adjusted through the beacon interval field in the
frame body.

Fig. 3. Diagram of the proposed periodic broadcasting scheme.

Fig. 4. Architecture of the critic and actor networks in MAPPO.

network parameters, then STAs make access decisions in a
distributed manner based on the converged actor networks.

Algorithm 1 Experience Tuple Construction Algorithm
Initialization: joint local state st, global state St, time step
t, t′ = 0.
while t ≤ Tmax do

t′ + = 1
if Transmission finishes or channel is idle then

Update channel observation ot′

lt′ = t′ − t
if ot′ == 1 or ot′ == 0 then

Receive correct joint action at

else
Estimate at by probability matrix P t (6)

end if
Extract T̂ ht from zt in St and obtain rt′ by (4) ∼ (5)

Calculate T̂ ht′ by (3), update zt′ and St′

for STA n = 1 to N do
Set on

t′ = ot′ , lnt′ = lt′ and T̂ h
−n

t′ =
∑N

j=1,j ̸=n T̂ h
j

t′

Update cn
t′ and sn

t′

end for
Store experience tuple et = (St, st, at, rt′ , St′ , st′)
t← t′, st ← st′ , St ← St′

end if
end while

B. Neural Network Architecture

The architecture of the critic and actor networks is illus-
trated in Fig. 4. To effectively process a series of observations
and extract informative features, we introduce Long Short-
Term Memory (LSTM) layers into both networks. Specifi-
cally, the actor network of STA n takes the local state sn

t

as input, followed by a series of cn
t that are fed into a
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fully-connected (FC) layer activated by exponential linear unit
(ELU) function before being processed by the LSTM layers.
The output of the LSTM layers is then passed through two
FC layers activated by tanh function, and a softmax function
is applied in the final layer to obtain the policy distribution
πΘ(an

t | sn
t ). The number of actor parameters Θ are about

4, 142 × 4 ≈ 16.57KB if each parameter is stored as 4-byte
float values. The critic network takes the global state St as
input and feeds a series of zt into LSTM layers. The output
of the LSTM layers is then passed through two FC layers
activated by tanh and linear function, which yield N value
functions that guide the corresponding actor networks.

C. Loss Function

The centralized learning is implemented in AP based on
a trajectory τn =

(
sn

t−D, St−D, an
t−D, rn

t−D+1, . . . , s
n
t , St

)
for the STA n training, where D is the length of tra-
jectory. The advantages {An

t−i}Di=1 and discounted reward-
to-go {R̂n

t−i}Di=1 are computed from τn. We obtain τC =
{St−i, R̂t−i}Di=1 and τn

A = {sn
t−i, a

n
t−i, A

n
t−i}Di=1 for training

critic and actor network of STA n, respectively. Then, AP
randomly samples mini-batches with size of B from τC and
{τn

A}Nn=1.
The parameters of critic network Φ are updated by mini-

mizing the loss function

L (Φ) =
1
B

B∑
b=1

∥V Φ,b − R̂b∥2, (7)

where V Φ,b is the centralized critic network output vector
from global state Sb. As for the actor network, we calculate
the loss function

L (Θ) =
1

N ·B

N∑
n=1

B∑
b=1

[
min (rΘ,bA

n
b ,

clip (rΘ,b, 1− ε, 1 + ε) An
b ) + σS [πΘ (sn

b )]
]
, (8)

where An
b is computed using the generalized advantage estima-

tion (GAE) method [7], i.e., An
b = Â

GAE(γ,λ)
old (sn

b , an
b ). rΘ,b

is the probability ratio πΘ(an
b |s

n
b )

πΘold(an
b |s

n
b ) , clip is the clip function

which restricts rΘ,b into the interval [1 − ε, 1 + ε], S is the
policy entropy, and σ is the entropy coefficient. The weights Θ
of actor network are updated by gradient decent to minimize
the loss function (8).

V. PERFORMANCE EVALUATION

A. Simulation Setup

In the simulations, we refer to IEEE 802.11ac [10], which
is a common Wi-Fi standard used in practice. One time slot
lasts for 9 µs. The data rate is set to 12.0 megabits per second
(Mbps). Hence, the length of the beacon packet is given by
LBc = 16.57KB ÷ 12.0Mbps ÷ 9µs ≈ 1198 time slots. The
parameters of each layer are initialized using orthogonal, and
RMSprop optimizer is used for batch gradient descent. The
other parameters of wireless scenario and MAPPO algorithm
are summarized in Table I. In order to compare the perfor-
mance, a series of algorithms are introduced as the baselines.

TABLE I
PARAMETERS OF WIRELESS SCENARIO AND MAPPO ALGORITHM

1) Independent PPO (IPPO): Both actor and critic network
are independently deployed in each STA and take local
state as input, resulted in a straightforward decentralized
algorithm with low signaling overhead.3 The neural
network architecture is the same as that of MAPPO
except that the number of outputs in critic is set to 1.

2) CSMA/CA: Basic mode: The initial backoff window size
is set to 32, the maximum backoff phase is set to 5, and
DIFS is set to 4 time slots; RTS/CTS mode: The setting
of the basic mode remains unchanged, and the length of
RTS and CTS is set to 2 time slots.

3) Optimal algorithm: All STAs are able to observe the
joint local state st and joint action at. Therefore, all
STAs can always select the optimal action at each time
step to maximize network throughput while maintaining
fairness.

B. Performance Metrics

1) Short-term throughput: The short-term throughput of
STA n at time slot t (i.e., Thn

t ) is obtained as the
ratio of successful transmission time slots over the past
T = 50000 time slots. We define network throughput as
sum of all STAs’ throughput, i.e.,

∑N
n=1 Thn

t .
2) Fairness: For the measurement of fairness, we introduce

the Jain’s fairness index (JFI) defined as following:

J (Tht) =

(∑N
n=1 Thn

t

)2

N ·
∑N

n=1 (Thn
t )2

, (9)

where Tht = [Thn
1 , Thn

2 , . . . , ThN
t ]. If the throughput

difference of each STA is minimum, J (Tht) = 1. If
one STA completely monopolizes the channel resources,
J (Tht) = 1

N .
3) Convergence time: We define the convergence time as

the time taken to converge since initialization. The
convergence condition is defined as that the minimum
network throughput first exceeds 95% of optimal perfor-
mance and maintains it until the end of the simulation.

3In IPPO, T̂ ht required for reward function cannot be obtained in a
fully decentralized framework. Therefore, the AP should broadcast the reward
vector rt′ .

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 14,2023 at 06:32:26 UTC from IEEE Xplore.  Restrictions apply. 



3254 IEEE COMMUNICATIONS LETTERS, VOL. 27, NO. 12, DECEMBER 2023

Fig. 5. Network throughput and fairness performance comparison under dif-
ferent values of N among MAPPO, CSMA/CA-Basic, CSMA/CA-RTS/CTS,
IPPO and optimal algorithm. Each curve is averaged over ten different runs,
and the shaded areas are within the standard deviation.

C. Simulation Results

To examine the performance of the proposed MAPPO-MAC
protocol, we compare the network throughput and JFI with
IPPO, CSMA/CA, and optimal algorithm under a distinct
number of STAs when TBc = 12000. As shown in Fig. 5,
in the basic mode of CSMA/CA, since it relies on random-
ization to mitigate collisions, STAs inevitably waste some
time on waiting and collisions, which leads to degradation
of throughput and fairness as N increases. Although in the
RTS/CTS mode, its performance is substantially enhanced,
there is a gap compared to the proposed scheme. As for
IPPO, the throughput has a sharp decrease when N exceeds 8.
Correspondingly, the JFI value also starts to decrease sharply
from N = 8. In contrast, MAPPO still performs well thanks to
the centralized critic network, which makes full use of global
state and enhances policy learning. In particular, with MAPPO,
the STA with the lowest EWA throughput would transmit, and
thus take turns to occupy the channel, which ensures high
efficiency as well as fairness among the STAs.4

To investigate the impact of the beacon interval TBc on
the convergence performance, we conduct simulations with
varying values of TBc when N = 10. As shown in Fig. 6,
the converge time first decreases and then increases as TBc

increases. On one hand, if TBc is too short, beacon packets
are transmitted too frequently, and channel resources are
primarily occupied by these packets instead of data packets.
Consequently, the AP may not collect sufficient samples to
train the actor networks, slowing down the training process
and increasing the convergence time. On the other hand, if TBc

is too long, the actor networks can’t be updated promptly,
causing the difference between πΘold

and πΘ to be larger. As a

4It can be seen from Fig. 5 that the performance of MAPPO also
deteriorates when N ≥ 14, it is most likely due to insufficient experience
samples. If virtual experiences are used to expand the experience memory [11],
then a near-optimal performance can be achieved even when N = 20 with the
same simulation settings. How to deal with a large number of STAs deserves
further study.

Fig. 6. Convergence time performance with different values of TBc. The
curve is averaged over ten different runs, and the shaded areas are within the
standard deviation.

result, the probability ratio rΘ,b may be clipped at 1 − ε or
1+ε, leading to the first term in Eq. (8) making no contribution
to the gradient of Θ, which can impact the centralized training
process.

VI. CONCLUSION

In this letter, we propose an online MARL-based MAC pro-
tocol named MAPPO-MAC protocol that efficiently estimates
joint actions to reduce uplink signaling while updating actor
network parameters of STAs periodically via the downlink
beacon frame. We also introduce a novel reward function
that ensures both throughput and fairness. Simulation results
demonstrate that MAPPO-MAC protocol outperformed classic
CSMA/CA and IPPO-MAC in terms of the network through-
put and Jain’s fairness index. Additionally, we investigate the
impact of the beacon interval on convergence performance
and find that setting a proper beacon interval is crucial for
achieving fast convergence. Overall, our proposed MAPPO-
MAC protocol provides a promising solution to the challenges
of next-generation wireless networks.
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