
Joint Caching, Communication, Computation
Resource Management in Mobile-Edge Computing

Networks
Mingqi Han∗, Xinghua Sun∗, Xijun Wang†, Wen Zhan∗, Xiang Chen†

∗School of Electronics and Communication Engineering, Shenzhen Campus of Sun-Yat sen University, Shenzhen, China
†School of Electronics and Information Technology, Sun-Yat sen University, Guangzhou, China

Email:{hanmq}@mail2.sysu.edu.cn, {sunxinghua, wangxijun, zhanwen6, chenxiang}@mail.sysu.edu.cn

Abstract—Mobile-edge Computing (MEC) has now emerged
as a complement to cloud computing, providing computational
capacity for the resources-constrained edge devices. Recently,
intelligent computation offloading and cache placement stands
as effective approaches to enhance the performance of dynamic
MEC networks. In this paper, we propose an online centralized
joint resource management approach, named Transformer-based
Actor-Critic (TAC), to minimize the task execution time subject to
resource constraints. We decouple this mixed-integer non-linear
programming (MINLP) problem into a non-convex offloading
decision part and a convex joint resources allocation part, and
propose the TAC approach to address the non-convex task
offloading problem with low computational complexity. In the
joint resources management problem, the high-dimensional state-
action space is addressed by the transformer-based actor-critic
architecture. Through the proposed TAC, the joint cache, commu-
nication and computation resource management can be obtained
without the knowledge of future task arrivals. Simulation results
demonstrate that the TAC can save 48.4% average task execution
time with only 2.3% additional computation delay compared to
Random with lowest computational complexity. In particular, it
further demonstrates great generalization ability to enhance the
performance in untrained scenarios.

Index Terms—Mobile Edge Computing, Deep Reinforcement
Learning, Joint Resource Management

I. INTRODUCTION

With the rapid development of Internet-of-Things (IoTs) de-
vices, it is anticipated that there will be 50 billion IoTs devices
in the whole network, which enables wireless user equipments
(UEs) evolve into both content producers and consumers [1].
Those large-scale interconnected user devices will generate
diverse data traffic and data requirements, including caching,
communication and computation.

Since most of UEs in the edge network only have limited
computational capacity, mobile-edge computing (MEC) plays
a crucial role in providing the computational capacity [2]. With
edge servers deployed in MEC network, both caching services
and computing capabilities can be provided to UEs to save
computation energy and time cost. However, offloading all

This work of Xinghua Sun was supported in part by the Na-
tional Key Research and Development Program of China under Grant
2023YFB2904100, and in part by Shenzhen Science and Technology Pro-
gram (Grant No. ZDSYS20210623091807023). The work of Wen Zhan
was supported in part by Shenzhen Science and Technology Program
(No.RCBS20210706092408010), and in part by National Natural Science
Foundation of China under Grant 62001524.

tasks to the edge servers can significantly degrade the compu-
tation performance due to signalling overhead and queueing
delay. To address it, intelligent computation offloading and
cache placement is proposed by selectively offloading and
caching suitable tasks to the edge servers [3]–[5]. Through
efficient offloading and caching policies, both the time and
energy consumption for task computation and communication
can be minimized. In [4], an offline Deep Learning (DL) cache
placement scheme was proposed to save roughly 33% energy
consumption compared to the greedy caching scheme. In
[5], a Lyapunov-guided Deep Reinforcement Learning (DRL)
approach was proposed to transfer the multi-stage optimization
problem into conventional problem, and apply the model-free
DRL approach to decide the offloading decision.

Considering multiple edge servers in the MEC network shar-
ing computation and communication resources, an efficient
joint resource allocation is also crucial to meet the demand
of large-scale tasks computation [3], [4], [6]. When each edge
server operates independently, it may struggle to consistently
handle the computation and cache demands from a big-data
stream, rendering the necessity to dynamically optimize re-
sources allocation. In [6], the joint resource allocation problem
was regarded as the proximal upper bound problem, and the
block successive upper bound minimization was applied to
obtain better joint resource allocation. In [3], an closed-form
expression of optimal transmission power and CPU frequency
was derived given the specific offloading decision.

In this paper, we consider a more general MEC network
involving multi-level devices, including multiple UEs, edge
servers and the cloud center. In the considered scenario,
since the high-level devices commonly cover multiple low-
level devices, not only the number of UE at the lowest level
increases significantly, but the destination of task offloading
also increases linearly with respect to the number of levels,
resulting in a high-dimensional state-action space. In such
scenarios, conventional DRL approaches struggle to handle the
complex problem of multiple interrelated actions. To address
it, we propose the Transformer-based Actor Critic (TAC) by
combing the transformer and the actor-critic architecture [7].
Utilizing the transformer, the proposed TAC algorithm can
efficiently address the high-dimensional action problem, and
enhance the evaluation ability of critic on high-dimensional
state space, resulting in significantly better performance.

The rest of paper is organized as follows. In Sec. II, the

979-8-3503-0358-2/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 W
ire

le
ss

 C
om

m
un

ic
at

io
ns

 a
nd

 N
et

w
or

ki
ng

 C
on

fe
re

nc
e

(W
CN

C)
 |

 9
79

-8
-3

50
3-

03
58

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
W

CN
C5

72
60

.2
02

4.
10

57
13

26

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 08,2024 at 08:44:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The considered multi-user MEC network with single cloud center,
multiple edge servers and different types of UEs.

system model and the problem of interest are described. In
Sec. A., the decoupled optimization problem is formulated,
and the proposed TAC algorithm is illustrated. In Sec. IV, the
performance of TAC algorithm is evaluated. Finally, the paper
is concluded in Sec. V.

II. SYSTEM MODEL AND PROBLEM OF INTEREST

A. System Model
As shown in Fig. 1, we consider an MEC network composed

of a single cloud center, a set of edge servers K and a set of
UEs N . Each edge server is deployed with a Base Station
(BS) and covers multiple UEs. For simplicity, we assume that
UEs can only communicate with their associated edge server,
and the set of UEs associated with edge server k ∈ K is
denoted as Nk ⊂ N . The set of tasks is denoted as M, and we
adopt a common computation model to characterize them [8].
Each computation task m ∈ M is represented by the vector
(Sm

i , Cm, Sm
o), in which Sm

i and Sm
o denote the size of input

data and the output computed data of task m, respectively, and
Cm denotes the required CPU cycle per bit of input data.

In order to ensure successful joint resource allocation and
decision-making for offloading and caching in the MEC net-
work, we divide time into rounds as illustrated in Fig. 2.
Each round begins with each UE being assigned a single
task randomly selected from the set of tasks M. Notably,
different types of UEs have their own independent task arrival
distributions, resulting in varying expected numbers of each
type of tasks arrived at different types of UEs. After receiving
tasks, UEs make task offloading decision, i.e., compute locally,
upload to the edge server or further upload to cloud center.
If the task is offloaded, the edge server or cloud center will
compute the task and send the result of task back to the UE.
Each round ends only when all tasks have been computed, and
the duration time of round t is denoted Tt, which equals to
the maximum task execution time among all UEs.

B. Problem Formulation
In the considered network, the allocation on the communi-

cation and computation resources of edge servers, the caching

Fig. 2. Illustration of the workflow for the MEC system. The duration of
each decision time interval equals to the maximum computing time among
UEs.

decision of edge servers, and the task offloading decision of
UEs are under the control of cloud center. For computation
resource, the allocation ratio among edge servers at each
round t are denoted as {akt |k ∈ K}, subject to the resource
constraint

∑
k∈K akt = 1. Since the computation resource

linearly relates to the CPU frequency [8], we consider the
computation resource as the CPU frequency (in CPU rounds
per second) in the following. Subsequently, the time-varying
computation capacity of each edge server can be represented as
aktFE , in which FE represents the total computation resource
for edge servers. While the computation capacity of cloud
center and UEs are fixed over time, which are denoted as
FC and FUE , respectively.

For communication resource, the allocation ratios among
edge servers at each round t are denoted as {bkt |k ∈ K}, sub-
ject to

∑
k∈K bkt = 1. Subsequently, the available bandwidth of

the transmission between edge server k and its associated UEs
Nk is given by bktB, in which B represents the total bandwidth
of the MEC network. Each UE associated with the same edge
server communicate using the Time-Division Multiple Access
(TDMA) manner. The transmission between cloud center and
edge server k uses the same available bandwidth bktB.

For the cache resources, we assume that only the edge
servers have the capability to store the results of offloaded
tasks. By caching the results of tasks, the edge servers can
directly provide the cached results to corresponding UEs,
eliminating the need for redundant computations. The storage
capacity (in bits) of each edge server k is denoted as Sk. The
edge server can cache the result of offloaded task m only when
the current cache capacity is sufficient.

Since the UEs have only limited computation resource,
offloading the tasks to the associated edge server or the cloud
center can significant accelerate the tasks computing time. The
offload decision of UE n at the round t is given by

xn
t =

 2, if task is offloaded to the cloud center ,
1, if task is offloaded to nearest edge server ,
0, otherwise

. (1)

When xn
t = 2, since UEs n ∈ Nk can only communicate

with its edge server k, the task will be transmitted from the
edge server first, and then to the cloud center. Subsequently,

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 08,2024 at 08:44:14 UTC from IEEE Xplore. Restrictions apply.

the edge server can cache the result of offloaded task when
its current cache capacity is sufficient and the task has been
offloaded, i.e., xn

t ∈ {1, 2}. The cache decision of edge server
k for each offloaded task m at the round t can be given by

ckt (m) =

{
1, cache the result of offloaded task m,
0, do not cache the result of task m,

. (2)

according to (1). We denote the cached results of tasks
in edge server k as Ck

t (m) ∈ {0, 1}, where Ck
t (m) = 0

represent task m has not cached in edge server k at round
t. Subsequently, the constraint of cache capacity is given
by Sk ≥

∑
m Ck

t (m)Sm
o . Then, we can derive the task

computation time T1,t = {Tn
1,t|n ∈ N} according to the

offloading decision and cached status, i.e.,

Tn
1,t =

Sm
i Cm

FUE
, if xn

t = 0,

(1− Ck
t (m))

Sm
i Cm

ak
t FE

, if xn
t = 1,

Sm
i Cm

FC
, if xn

t = 2,

. (3)

To derive the task communication time, we first obtain the
instantaneous data rates between UEs, edge servers and the
cloud center, which are given by

R(n, k) = bktB log(1 +
P |h(k, n)|2

σ2
)

R(c, k) = bktB log(1 +
P |h(c, k)|2

σ2
)

, (4)

where P ∈ {PUE , PE , PC} denotes the fixed transmission
power of device including UEs, edge servers and the cloud
center, respectively. h(k, n) denotes the channel gain between
UE n and associated edge server k, and h(c, k) denotes the
channel gain between the cloud center and edge server k. For
simplicity, we assume each device has the same power of the
Gaussian noise σ2. Then, the task communication time T2,t =
{Tn

2,t|n ∈ N} can be derived as

Tn
2,t =

0, if xn

t = 0,
Sm
i

R(n,k)
+

Sm
o

R(k,n)
, if xn

t = 1,
Sm
i

R(k,c)
+

Sm
o

R(c,k)
, if xn

t = 2,

. (5)

Then, since the task offloading and computation procedure
is sequentially executed over time, we denote the queue-
ing matrix for computation on edge servers as Q11,t =
{q11,t(n1, n2)|n1, n2 ∈ N} and on the cloud center as
Q12,t = {q12,t(n1, n2)|n1, n2 ∈ N}, where

q11,t(n1, n2) =

 1, if xn1
t = xn2

t = 1 and n1, n2 ∈ Nk,
1, if n1 = n2,
0, otherwise ,

q12,t(n1, n2) =

 1, if xn1
t = 2 and xn2

t = 2,
1, if n1 = n2,
0, otherwise ,

, (6)

and denote the queueing matrix for communication as Q2,t =
{q2,t(n1, n2)|n1, n2 ∈ N}, where

q2,t(n1, n2) =

 1, if xn1
t = xn2

t = 1 and n1, n2 ∈ Nk,
1, if xn1

t = 2 and xn2
t = 2,

0, otherwise ,
. (7)

Q11,t,Q12,t and Q2,t represent that UE n1 and n2 needs
to wait for each other to complete task computing and com-
munication in an TDMA manner. Finally, we can obtain the
duration time Tt of each round t as

Tt =∥T1,t(0) +Q11,t · T1,t(1)

+Q12,t · T1,t(2) +Q2,t · T2,t(1) + T2,t(2)∥∞
, (8)

where Tt(x) = {Tn
1,t if xn

t = x else 0|n ∈ N} is the part of
matrix Tt comprising by the elements of specific offloading
decision x. In this paper, we aim to proposed an online
algorithm to enhance the performance of the MEC network by
minimizing the task execution time, with the cache, compu-
tation and communication resources constraints. By denoting
xt = {x1

t , . . . , x
N
t }, ct = {c1t , . . . , cKt }, at = {a1t , . . . , aKt }

and bt = {b1t , . . . , bKt }, and letting x = {xt}Tt , c = {ct}Tt ,
a = {at}Tt and b = {bt}Tt , the optimization problem can be
formulated as:

minimize
x,c,a,b

lim
T→∞

1

T
·

T∑
t=1

Tt

subject to:

akt ∈ [0, 1] , bkt ∈ [0, 1] ,

K∑
k=1

bkt ≤ 1,

K∑
k=1

akt ≤ 1, ∀k, t

xk
t ∈ {0, 1, 2}, ckt (m) ∈ {0, 1}, Sk ≥

∑
m

Ck
t (m)Sm

o , ∀m, k, t

. (9)

III. TAC ALGORITHM

Given that the optimization problem in (9) involves the
infinite norm in the objective function, i.e., Tt, along with
the binary caching and ternary offloading decision constraints,
the problem can be regarded as a Mixed-Integer Non-linear
Programming (MINLP) problem. To address the MINLP prob-
lem, we partition the original problem (9) in each round t into
two parts, the non-convex part and the convex part. First, we
include the non-convex binary caching c and ternary offloading
decision x constraints in one part:

minimize
xt,ct

T ∗
t (xt, ct)

subject to:

xk
t ∈ {0, 1, 2}, ckt (m) ∈ {0, 1}, Sk ≥

∑
m

Ck
t (m)Sm

o , ∀m, k, t

, (10)

in which T ∗
t (xt, ct) = min

at,bt

Tt(xt, ct,at,bt) denotes the

minimum value of Tt given the specific binary caching de-
cision ct and ternary offloading decision xt. After obtaining
the offloading decision, the rest part of caching decision and
resources allocation can be addressed as a conventional convex
problem, which is given by,

minimize
at,bt

Tt(xt, ct,at,bt)

subject to:

ak
t ∈ [0, 1] , bkt ∈ [0, 1] ,

K∑
k=1

bkt ≤ 1,

K∑
k=1

ak
t ≤ 1, ∀k, t,

, (11)

which can be directly solved by the conventional convex
optimization approaches. For (10), exhaustive searching for
the ternary offloading and binary cache decision has excessive
computational complexity, which requires 3N and 2N iterative
times, respectively. Given the computational complexity of
convex optimization on searching the optimal joint resources

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 08,2024 at 08:44:14 UTC from IEEE Xplore. Restrictions apply.

allocation for (11) as O(N3.5), the overall computation com-
plexity for joint resource management is given by O(N3.5 ·
3N), which may cause unaffordable exponential increasing
computational complexity and delay with respect to number
of UEs N .

In practical dynamic scenarios, such MINLP problem must
be solved repeatedly when new tasks arrive. Consequently, em-
ploying conventional optimization algorithms in such MEC en-
vironment becomes unaffordable. Moreover, the computation
delay introduced by the conventional optimization algorithms
will further degrade the performance of the MEC network.
To enhance its performance while reducing the computational
complexity, we propose the TAC algorithm and decouple the
offloading decision and caching decision. Only when a specific
offloading decision is given, the caching policy can be derived,
leading us to primarily focus on optimizing the offloading
decision. Since the future task arrivals are not available, we
introduce the Partial Observation Markov decision process
(POMDP) model formulation of the proposed TAC, i.e., state,
action and reward design. Then, we will illustrate the TAC
algorithm, along with the transformer architecture employed
to tackle the high-dimensional state and action space.

A. DRL Model Formulation
In this section, we regard the cloud center as agent and

the offloading decision as the POMDP since the future tasks
arrival status is unobservable for the cloud center. During each
round, the agent first observes the environmental state, makes
an efficient offloading decision according to state, and then
receives a reward.

A.1 State-Action
As aforementioned, the transformer has the feature that the

number of output is the same as input utilizing the encoder-
decoder architecture. By introducing the transformer to address
the high-dimensional state and action space, we define the state
of each UE and aggregate them to form the agent’s state as
input of TAC model. The state of UE n is given by

snt = {T ∗,n
1,t (0), T

∗,n
2,t (0), T

∗,n
1,t (1), T

∗,n
2,t (1), T

∗,n
1,t (2), T

∗,n
2,t (2)},

(12)
in which T ∗,n

1,t (x), T
∗,n
2,t (x) denotes the value of Tn

1,t and Tn
2,t

of (3) and (5) given by xn
t = x, akt = bkt = 1, respectively.

Then, the state of TAC agent st is given by

st = {snt }Nn=1 ∈ RN×6. (13)

For the agent’s action, since we regard the offloading
decision as the POMDP, the action is directly the stack of
the ternary offloading decision of all UEs xt.

A.2 Reward
As our goal is to minimize the duration time Tt in each

round t with the joint cache, communication and computation
resource constraint, we take the negative value of it in each
round t as the reward, i.e.,

rt = −αTt, (14)

where α is the coefficient to limit the range of reward rt and
stabilizes the convergence of TAC model. Through this reward
design, the optimization problem can be addressed when the
proposed TAC model converged.

Fig. 3. Architecture of the transformer in the TAC. Multiple encoders take
the tasks of all UEs as input, the associated id of edge server as position
embedding, and pass them through the decoder to output the same number
of offloading decisions of each UE.

B. Transformer Architecture
As aforementioned, we introduce the transformer architec-

ture in the proposed TAC algorithm instead of widely-used
multi-layer perceptron (MLP) in DRL approaches, which has
two-fold reason. First, conventional MLP cannot efficiently
tackle the high-dimensional state space S ∈ RN×6 and action
space X ∈ RN×3 due to dimensional disaster and low sample
efficiency. Second, using MLP requires to flatten the input
vector, which will destroy the inherent representation between
the state of each UE and degrade the performance.

To address these challenges, we introduce the transformer
architecture, and extend the position embedding into the con-
sidered MEC network. As illustrated in Fig. 3, each individual
encoder takes the same state st and position embedding pos
as input. In particular, since the UEs associated the same edge
server exhibit coupling computation and communication time
when xn

t ∈ {1, 2}, we use the id of associated edge server
k of each UE n ∈ Nk as the position embedding to capture
the intrinsic relationships among UEs. Then, the output of en-
coders are pass to the decoders, and then output the probability
Pt = {Pn

t }n∈N of each offloading decision xn
t ∈ {0, 1, 2} for

all UEs. Finally, those offloading decisions with maximum
probability are selected as action, i.e., xt = argmax

xn
t ∈{0,1,2}

Pt.

C. Algorithm Overview
The overall procedure of the proposed TAC is illustrated

in Fig. 4. During each round, the cloud center collects the
tasks status of UEs st, then obtain the offloading decision xt

and broadcast to each UE to perform. Finally, the cloud center
obtain the reward rt from the environment and restore the tuple
st, xt, rt into memory for the following training. In particular,
we consider to pre-train the critic network using the random
offloading decision in the proposed TAC. This random offload-
ing decision can efficiently collect data for the offline training
of critic network since it has low computational complexity to
provide sufficient data for the training of transformers. We use
the Mean Squared Error (MSE) as loss function of the critic,
i.e.,

Lcritic = (Q (st, pt)− rt + γQ (st+1, pt+1))
2
, (15)

in which (Q (st, pt)) is the Q-value represent the expected
cumulative reward of offloading decision probability pt in

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 08,2024 at 08:44:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Illustration of the TAC procedure. First, train the critic network using
random offloading action. Then, using the pre-trained critic to accelerate the
convergence of both actor and critic network.

specific state st. In particular, we introduce pt instead of xt

to address the problem that the argmax function is non-
differentiable, which enables the gradient of critic can be
pass to the actor for gradient descent. After pre-training the
critic, it can evaluate the Q-value Q(st, xt) accurately and
provide the approximate gradient of the non-differentiable
function T ∗

t (xt, ct). Then, the actor can utilize the gradient
∂Q (st, p) /∂x to efficiently optimize the offloading policy.
The loss function of actor is given by,

Lactor = ∇pQ (st, p)|p=π(p|st) ∇ππ (p | st)− βS [π(p | st)] ,
(16)

where π (p | st) denotes the actor network, and βS [π(x | st)]
represents the entropy-loss of the output probability p given
state st as similar to that in the SAC algorithm. Through
the introduction of entropy-loss, the proposed TAC algorithm
can have better exploration ability and find better offloading
actions.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the proposed TAC algorithm
by comparing simulation results with other methods. In the
following, we first introduce the simulation setup, and then
the detailed performance evaluations will be presented under
different scenarios.

A. Simulation Setting

In the following, we consider that the number of UEs
associated with each edge server follows the uniform distribu-
tion, and their positions follow the two-dimensional uniform
distribution taking the position of the edge server as center.
Edge servers are uniformly distributed on a fixed-radius cir-
cumference around the cloud center. The detailed parameters
of MEC network and training are presented in Table I and
Table II, respectively.

To present a comprehensive comparison, we introduce the
Random method, i.e., the probability of ternary offloading
decision of each UE pnt is randomly selected, and extend
the Random and TAC approaches using additional generated
actions as baselines similar to that in [5]. In particular, the

TABLE I
MEC NETWORK PARAMETERS 1

Parameters Value
Radius of edge server 100 or 200 meters

Radius of Cloud Center 200 or 300 meters
Num of edge servers 6 or 8

Num of UEs associated with edge server {3, 4, 5}
Num of tasks M = 25

Num of types of UEs 6

Num of types of tasks 25

Total Bandwidth 80 MHz
Total Computation Resources 86.4 or 115.2 GHz

Transmission Power PC , PE , PUE 40, 30, 23.9 dBm
Distribution of input data size [5, 20]Mbits

Distribution of output data size [2, 40]Mbits

Distribution of CPU rounds [600, 1200]

TABLE II
HYPER-PARAMETERS OF TAC

Parameters Value Parameters Value
Learning rate 2 · 10−5 Num of rounds 600

Entropy coefficient β 0.01 Optimizer AdamW

additional actions is generated by adding Gaussian noise with
different powers on the decision probability pnt . Then, the
values of T ∗

t (xt, ct) of all generated offloading decisions xt

are calculated, and select the decision with minimum value
of T ∗

t (xt, ct) as the actual decision. Such approach requires
much larger computational complexity, and is only introduced
to evaluate the performance of proposed TAC algorithm.

B. Performance Metrics

The following metrics are used to evaluate the performance
of the proposed TAC algorithm.

• Average execution time: We demonstrate the average task
execution time in each episode to evaluate the perfor-
mance of the MEC network.

• Computation delay: To evaluate the computational com-
plexity of the joint resource management approaches,
we introduce the actual computation delay ratios of
different approaches to the Random approach with lowest
computational complexity in the same platform.

C. Performance Comparison

In this section, we consider the scenario comprising one
cloud center and 6 edge servers, with the number of UEs
associated with each edge server of edge servers ranging from
3 to 5, resulting in an expected number of UEs N = 24.
The performance comparison is illustrated in Fig. 5, and
the computation delay comparison is presented in Table III.
First, the proposed TAC approach can achieve 48.4% task
execution time reduction compared to the Random with only
2.3% additional computational delay. Then, the TAC can also
significantly outperform the extended Random with 20 and 30
additional generated actions with 36.8%, 33.7% execution time
reduction and 1744.1%, 2398.4% computation delay reduc-
tion, respectively. Furthermore, the TAC can achieve similar
performance to itself with 20 additional generated actions,
which also illustrates that the TAC can efficiently address this

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 08,2024 at 08:44:14 UTC from IEEE Xplore. Restrictions apply.

Average Task Execution Time Comparison

Different approaches
0

1

2

3

4

5

6
A

ve
ra

g
e
 T

a
sk

 E
xe

cu
tio

n
 T

im
e
/s

Random

Random with 20 additional actions

Random with 30 additional actions

TAC

TAC with 20 additional actions

Fig. 5. Performance comparison between Random and proposed TAC
algorithm with different number of generative actions. Notably, 20 and 30
represent that there are 20 and 30 additional actions are generated in each
decision procedure, respectively.

MINLP problem without need of additional generated actions.

TABLE III
THE COMPUTATION DELAY COMPARISON

Method Computation Delay Ratio
Random 100%

Random with 20 additional actions 1846.4%
Random with 30 additional actions 2800.7%

TAC 102.3%
TAC with 20 additional actions 1857.9%

In particular, comparing the computation delay of extended
Random to that of Random, the additional generated actions,
i.e., 20 and 30, lead to computation delays that are approx-
imately proportional to the number of additional action, i.e.,
1846.4% and 2800.7%. Moreover, the extended TAC has sim-
ilar computation delay as that of extended Random, indicating
that the complexity of convex optimization in computing
the optimal resource allocation (100%) is much higher than
that of TAC model for determining offloading action (2.3%).
Therefore, obtaining offloading action with need of additional
generated actions is significant to reduce computation delay.

D. Generalization Ability

In this section, we consider to evaluate the generalization
ability of the proposed TAC by using the test scenario different
from training. The TAC model is the same as that in Fig. 5,
and the test scenario includes 8 edge servers and expected
number of UEs N = 32, in which the radius of edge servers
and cloud center becomes 200 and 300, respectively. As
presented in Figure 6, the performance of TAC degrades in
untrained scenarios, i.e., it is slightly worse than itself with 20
additional actions, approximately 1.9%, which indicates that
the proposed TAC can also exhibit great generalization ability
in more challenging untrained scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we consider a more general multi-level MEC
network, including a cloud center, multiple edge servers and

Average Task Execution Time Comparison

TAC and TAC with addtional actions
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
v
e

ra
g
e
 T

a
s
k
 E

x
e
c
u
ti
o
n
 T

im
e
/s

TAC

TAC with 20 additional actions

Fig. 6. Performance comparison between Random and proposed TAC
algorithm with different number of generative actions. In particular, the TAC
model is completely trained in the different scenario.

UEs. Aiming at minimizing the maximum task execution
time in each round, we formulate a non-convex MINLP
optimization problem, and decouple it into the convex part
and non-convex part. To reduce the computational complexity
and tackle the high-dimensional state-action space of the
non-convex ternary offloading decision, we propose the TAC
by combing transformer and Actor-Critic. Simulation results
illustrate that the proposed TAC algorithm can save 48.4%
task execution time, with only 2.3% additional computational
computation delay compared to the Random with lowest com-
putational complexity. Moreover, the TAC algorithm shows
great generalization ability to maintain considerable perfor-
mance even in untrained scenarios.

REFERENCES

[1] H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu, “Quality of information
aware incentive mechanisms for mobile crowd sensing systems,” in
Proceedings of the 16th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, 2015, pp. 167–176.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[3] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 235–250, 2020.

[4] J. Chen, H. Xing, X. Lin, A. Nallanathan, and S. Bi, “Joint resource
allocation and cache placement for location-aware multi-user mobile-edge
computing,” IEEE Internet of Things Journal, vol. 9, no. 24, pp. 25 698–
25 714, 2022.

[5] S. Bi, L. Huang, H. Wang, and Y.-J. A. Zhang, “Lyapunov-guided
deep reinforcement learning for stable online computation offloading
in mobile-edge computing networks,” IEEE Transactions on Wireless
Communications, vol. 20, no. 11, pp. 7519–7537, 2021.

[6] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, “Joint communication, computation, caching, and control
in big data multi-access edge computing,” IEEE Transactions on Mobile
Computing, vol. 19, no. 6, pp. 1359–1374, 2020.

[7] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer
in transformer,” Advances in Neural Information Processing Systems,
vol. 34, pp. 15 908–15 919, 2021.

[8] H. Xing, J. Cui, Y. Deng, and A. Nallanathan, “Energy-efficient proactive
caching for fog computing with correlated task arrivals,” in 2019 IEEE
20th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), 2019, pp. 1–5.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 08,2024 at 08:44:14 UTC from IEEE Xplore. Restrictions apply.

