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Abstract—Millimeter wave (mmWave) massive multiple-input
multiple-output (MIMO) technology represents a promising
technology in wireless communication. This technology relies
on beamforming codebooks for initial access and transmission.
However, conventional codebooks comprise a multitude of single-
lobe narrow beams, resulting in redundant beams that may never
be utilized in beam training. While centralized machine learning
methods can partially address the concern of redundancy, they
tend to overlook the presence of minority users scattered across
diverse regions. The equitable coverage of environmental adaptive
codebooks depends on addressing this issue. Hence, we devise
a distributed learning (DL) framework for codebook design,
which is tailored for scenarios with uneven user distribution and
fully exploits the decentralized and online learning features of
DL. Our approach begins by segmenting the user channels into
various subsets through a pre-classification process based on the
power response of the featured combining vectors from different
subregions. Then, we introduce a novel DL architecture designed
to process the subsets that are assigned to individual user
equipments (UEs). Each UE then generates a phase shift matrix
that contributes to the concatenation-based global aggregation in
the base station. The simulation results confirm the effectiveness
of DL in improving the performance of mmWave massive MIMO
systems in scenarios with unevenly distributed users.

Index Terms—Beamforming codebook, distributed learning,
massive MIMO, Beyond 5G, millimeter wave

I. INTRODUCTION

Millimeter wave (mmWave) multiple-input multiple-output

(MIMO) technology is pivotal for 5G and advancing beyond

5G. Large antenna arrays in these systems deliver significant

beamforming gains and ample signal reception power. Howev-

er, the adoption of fully digital transceiver architectures, which

deploys an RF chain for every antenna, becomes impracti-

cal due to the power consumption linked to high-frequency

The corresponding author is Pei Liu (e-mail: pei.liu@ieee.org). S. Buzzi
is also affiliated with DEIB, Politecnico di Milano, I-20133 Milano, Italy.
The work of S. Buzzi was supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE00000001 - program
RESTART, Structural Project 6GWINET).

mixed-signal circuits. Consequently, mmWave systems opt

for analog-only or hybrid designs to perform combining or

beamforming [1]. Massive MIMO systems pose significant

challenges, particularly in channel estimation and feedback.

As a result, the predefined single-lobe beamforming codebooks

are often adopted, with the discrete Fourier transform (DFT)

codebooks being a prominent example [3]. These traditional

approaches are designed to explore each feasible direction for

initial access or data transmission [2]. However, the classical

beam-steering codebooks suffer from two primary issues.

Primarily, they incur unnecessary costs in beam training by

covering all possible directions, even those that may never

be utilized. Secondly, they do not compatible with specific

scenarios such as non-line-of-sight (NLOS) or uneven user dis-

tribution. Although some progress has been made in adapting

to NLOS users in [6], [7], research on uneven and nonuniform

user distribution, which is a crucial aspect in 5G [4], [5],

remains largely overlooked.

Lately, centralized machine learning (CML) based neural

network techniques have made strides in addressing challenges

related to environmental adaptivity and cost-effective train-

ing for beam codebook learning or beam alignment in [6]-

[8]. Additionally, the proliferation of federated learning has

spurred interest in exploring the synergy between distributed

learning (DL) and beamforming. Some studies have focused

on the robustness of federated learning models during training

or the convenience of collecting local data and protecting

privacy [9]-[11]. Their claimed reduction in communication

overhead only holds true when the number of communication

rounds is relatively small. In comparison, few studies have

specifically compared the environmental adaptivity of the

distributed models with CML-based methods in the special-

ized uneven user distribution scenarios. In these scenarios,

the decentralized nature of DL can be leveraged to achieve

equity among different groups of users. In this work, we aim

to devise a distributed neural network-based codebook for



users distributed unevenly. The proposed method inherits the

high adaptivity of neural network-enhanced approaches and

employs a distributed learning framework to independently

obtain local codebooks for both the minority and majority

users in the uneven user distribution scenario. Moreover, it

reduces the computation load of base station (BS) by sharing

the burden with user equipments (UEs) and thus facilitates

online learning.
In this paper, we focus on the design of codebooks aided

by the DL framework in mmWave massive MIMO commu-

nication scenarios with unevenly distributed users. Firstly,

we propose a method to classify the user channels based

on the power responses of the featured combining vectors

from different subregions, which enables the differentiation

between majority and minority user channels. This classifica-

tion approach results in the identification of various subsets.

Subsequently, we conceive a novel DL architecture to process

these pre-classified subsets. The architecture includes assign-

ing different subsets to individual UEs, thereby generating

a corresponding phase shift matrix for each subset. These

matrices are then transmitted back to the BS for aggregation

and global updating. For the aggregation process, we propose

the distributed concatenation method (Discat) which is suitable

for the possible non-identical sizes of different UE codebooks.

Furthermore, DL also enables online learning, distributing the

computational load to the UEs. Notably, the DL-based method

effectively captures the channel characteristics of the minority,

which surpasses the performance of the CML method as a

baseline in terms of achievable rate.
Throughout this paper, lower-case (upper-case) boldface

letters indicate vectors (matrices). RM×K and C
M×K indicate

the M×K real space and M×K complex space, respectively.

A† and AT indicate the Hermitian transpose and pure trans-

pose of matrix A, respectively. IM means an M ×M identity

matrix; 0M×N means an M × N zero matrix. A complex

Gaussian random vector x is defined as x ∼ NC(x̄,Σ), where

x̄ is the mean vector and Σ is the covariance matrix. ‖ · ‖n
indicates the n-norm of a vector.

II. SYSTEM MODEL

A. Channel Model
In this paper, we consider a single-cluster multipath

mmWave massive MIMO communication system where K
single-antenna users distributed across R subregions are served

by a BS equipped with a uniform linear array (ULA) of M
antennas [12], [13]. Also, time division duplexing is adopted

in this paper, and it is assumed that both the BS and users

are perfectly synchronized within each symbol. As the Saleh-

Valenzuela channel model in [12] is utilized, the clustered

channel vector between the kth user and a M -antenna BS

is given by

hk =

√
M

L

L∑
l=1

αk,la(ψk,l), (1)

where αk,l indicates the complex gain on the lth ray, L
denotes the paths in total, and ψk,l represents the angle of

arrival (AOA) of the lth path. Moreover, ψk,l locates in the

angular domain Ψ � [β1, β2), where the lower bound β1

and upper bound β2 are assumed to be known as the basic

characteristics of the scenario. In detail, the array response

vector a(ψk,l)∈C
M×1 can be modeled by the ULA geometric

of the M -antennas whose m-th is given as [a(ψk,l)]m =
1√
M
e−j 2π

λ d(m−1) cos(ψk,l), where λ is the wavelength and d
represents the array spacing between adjacent antennas. To

conveniently model the channel states of all K users, the

channel set is defined as H, i.e., H �
K⋃

k=1

{hk} and |H| = K.

B. Transmission Model
In the context of an uplink data transmission procedure, the

kth user transmits the uplink symbol ak ∈ C to the BS. The BS

combines the received signal, and hence the processed signal

zk ∈ C can be represented as

zk = w†
υk
hkak +w†

υk
nk, (2)

where the symbol ak has average power E[|ak|2] = Pak
and

the noise vector nk at the BS antennas obeys the distribu-

tion nk ∼ NC(0, σ
2IM ). Also, the pure analog combining

vector wυk
∈ C

M×1 is the υkth beamformer of the N -

beam codebook W , i.e., W �
N⋃

n=1
{wn}, |W| = N and

υk ∈ {1, . . . , n, . . . , N}. In detail, the m-th element of wυk
is

constructed as [wυk
]m = 1√

M
ejθυk,m where θυk,m denotes the

corresponding phase shift at the mth BS antenna. Furthermore,

it is worth noting that wυk
solely applies a phase shift and does

not adjust the received signal power. Therefore, it is advisable

to properly fine-tune wυk
.

C. User Distribution Model
To represent the user locations in a simplified manner, the

channel set H is partitioned into R subsets and hence is

rewritten as H =
R⋃

r=1
Hr, where the user channel group Hr

contains the designated users’ channels that belonging to class

r (r = 1, ..., R). As elucidated in [13], every propagation path

within a given cluster is characterized by a mean AOA and fol-

lows a specific probability density function (PDF), which may

include Gaussian and Laplacian PDFs. To this end, by utilizing

the mean AOA the user’s single-clustered channel, the channel

subset Hr contains those channels whose mean AOA falls

within the interval Ψr �
[
β1 + (r − 1)β2−β1

R , β1 + r β2−β1

R

)
,

where Ψ is divided into R non-overlapping equally-spaced

subareas. Following the above definition, the uneven distri-

bution of users can be attributed to a significant size dis-

parity between one subset and the remaining subsets, i.e.,

∃n ∈ [1, R] s.t. ∀r ∈ [1, R] and r �= n, |Hn| � |Hr|.
Consequently, Hn can be interpreted as Hmajor, representing

the channel set of the majority of users. The remaining

channels can be classified as Hminor, which denotes the set

of channels of the users belonging to the minority group.

Therefore, it can be stated that Hmajor

⋃Hminor = H and

|Hmajor| � |Hminor|.



III. PROBLEM DEFINITION

In this paper, our objective is to formulate a design for an

N -beam codebook denoted as W that can effectively adapt

to the imbalanced user distribution described in Section II.

To this end, the codebook W construction process should be

transformed into an optimization problem.

In detail, the Signal-to-noise ratio (SNR) of user k after

combining is given as

SNRk =
E

{∣∣w†
υk
hkak

∣∣2}

E

{∣∣∣w†
υknk

∣∣∣2
} =

Pak

σ2

∣∣w†
υk
hk

∣∣2 , (3)

where the second equation is achieved when satisfying the

constrictions outlined in (1). Note that, the corresponding υk
is arbitrary in this case and may not be the optimal choice to

match the user and then maximize the SNR. To this end, the

optimal υk is expected to be derived through an exhaustive

searching through wn from the beam codebook, i.e.,

υ∗
k = argmax

n

∣∣w†
nhk

∣∣2, s.t. n=1, . . ., N, (4)

where υ∗
k denotes the best matched beamformer chosen from

the N -beam codebook W . Then, the objective is clarified,

i.e., the designed codebook should maximize SNR gains over

the entire dataset. Consequently, formulation of the optimal

codebook Wopt can be restated as

Wopt =argmax
W

K∑
k=1

∣∣∣w†
υ∗
k
hk

∣∣∣2, (5)

s.t.
∣∣[wυ∗

k
]m

∣∣= 1√
M

, ∀m = 1, ...,M.

In the next section, we will analyze the unequal SNR elevation

for the minority and majority caused by the uneven user

distribution and the batch based gradient descent in CML.

Then, we propose a novel DL-based solution that addresses

the issue.

IV. DISTRIBUTED MACHINE LEARNING SOLUTION

In this section, we leverage the decentralized characteris-

tic and online learning feature of DL to build an adaptive

codebook in uneven user distribution. Our approach begins

with the introduction of a pre-classification method, which

distinguishes between Hminor and Hmajor, and then allocates

them to different UEs. Following the allocation, we propose a

DL architecture to achieve the desired beam pattern for various

subsets at UEs. Then, a novel aggregation method is proposed

to equally integrate the local model into the global model.

A. Pre-classification for Dataset Allocation
Based on the user distribution description provided in

Section II, the following objective is to categorize users and

their channels into R distinct classes, thereby differentiating

between Hminor and the corresponding Hmajor. In essence, the

feature of each class can be identified as the median angle γr

of subregion r (γr � 2β1+(2r−1)
β2−β1

R

2 )[9]. Hence, by defining

the median angle of each class as the feature, the pre-classified

index r′ ∈ {1, ..., R} can be expressed as

r′ =argmax
i

∣∣a(γi)†hk

∣∣2 , s.t. i=1, . . ., R, (6)

where the operation a(·) represents the array response (re-

call (1)) of a specific AOA and R exhaustive searches are

conducted to determine the optimal index r′ that maximizes

the corresponding received power Pi =
∣∣a(γi)†hk

∣∣2. This

also indicates that the channels in Hr′ share similar power

responses to the featured combining vector in r′th subregion.

Then, the classified channels are delivered to the r′th UE as

part of Hr′ for the subsequent DL tasks.

B. Model Architecture
This paper adopts the self-supervised method outlined in

[6] as the backbone network which doesn’t rely on explicit

channel information. The details of the DL architecture will

be elaborated in the subsequent parts.

1) Complex-valued Fully-connected and Power Computa-
tion Layer: The first layer aims to execute complex-valued

multiplicative and additive operations. Here, the inner product

is given by

y = W†
r′h, (7)

where y ∈ C
N×1 signifies the received signal after combining

and h ∈ C
M×1 denotes a channel from the local subset Hr′ .

The term Wr′ ∈ C
M×N denotes the local codebook matrix

in the r′th UE. This corresponding codebook is attained via

the 1√
M

scaled phase-to-complex operation as follows,

Wr′ =
1√
M

(cos (Θr′) + j sin (Θr′)) , (8)

where Θr′ =
[
θ1, . . .,θn, . . .,θNr′

] ∈ R
M×Nr′ is the phase

shift matrix and θn = [θ1,n, ..., θM,n]
T

, n ∈ {1, ..., Nr′} is the

single phase shift vector. Then, the received power associated

with each combining vector is derived by calculating the

square modulus of every complex number in the received

signal vector y. Thus, the nth element of the received signal

power vector p ∈ R
Nr′×1 is defined as pn = |[y]n|2.

2) Softmax and Argmax Layer: In this layer, the initial

step involves the application of the softmax operation to

infer the “likelihood” of how likely a combining vector suits

the current channel h best, which reflects on the received

power p. Accordingly, the nth element of the softmax vector

s ∈ R
Nr′×1 can be given as sn = epn/

Nr′∑
j=1

epj . On a

parallel track, the argmax layer then generates the one-hot

vector c = [c1, . . . , cn, . . . , cNr′ ]
T ∈ R

Nr′×1. The nth element

cn = 1 when n = argmax
i

si, i ∈ {1, ..., Nr′} , and it is set

to 0 otherwise. The one-hot label c denotes the position of

the best combining vector and help ensure the gain of the

combining vector is still the largest when faced with similar

channels via backpropagation. Stepping into how the DL-

based codebook is learned, the next subsection will delve into

the local backpropagation and the complete DL solution.

C. Learning the DL-based Codebooks
1) Local Backpropagation: Within a batch, the quality of

the codebook is evaluated by quantifying the discrepancy



Fig. 1. The dataset allocation procedure and model transmitting direction.

between the corresponding s and c by the cross-entropy loss

in a batch, i.e.,

Lb = −
Nr′∑
n=1

cnb log2 snb, b ∈ {1, ..., B}, (9)

where snb and cnb represent the nth element of the bth data

pair in a batch. The term B denotes the number of channels

in a single batch. Notably, in the CML-based method, the

channels in a single batch randomly select channel from both

Hmajor and Hminor which constitute the global dataset H. In

contrast, the DL-based batch exclusively consists of Hmajor or

Hminor. Furthermore, the loss function above treats the one-

hot encoded label c as the probability distribution’s objective

for the model. Its value is minimized by adjusting phase shift

vectors θn ∈ Θr′ to diminish the dissimilarity between s and

c as much as possible. Then, the backpropagation gradient of

phase shift vectors gB (θn) for a batch is computed through

the chain rule [6], i.e.,

gB (θn) =
B∑

b=1

(
∂Lb

∂θn

)T

=
B∑

b=1

(
∂Lb

∂s

)T

· ∂s
∂p

· ∂p
∂y

· ∂y

∂θn
.

(10)

Therefore, the local phase matrix Θr′ can be updated using the

stochastic gradient descent (SGD) method, which is defined as

θ
′
n = θn − η · gB (θn)

T
, (11)

where η represents the learning rate of the SGD process. The

terms θ
′
n and θn denote the phase shift vectors after and before

updating in an updating cycle.

Remark 1: The main drawback of CML lies in the batch-

based gradient. The gradient of channels from Hminor might

be overlooked if there is an imbalance in number of the

users in different regions, which means SNR of minority

users won’t be elevated significantly through the updating.

To illustrate, consider a CML-based updating process of a

phase shift matrix Θ ∈ R
M×N based on the global dataset

H, the number of channels from Hmajor in a batch is assumed

to be Bmajor, channels from Hminor is set as Bminor (Bmajor�
Bminor, Bmajor +Bminor=B). The phase shifter θn serves both

the minority and majority, which is common when size of the

codebook is relatively small. To this end, the gradient of CML

with batch size B can be expressed as

gB (θn)=

B∑
b=1

(
∂Lb

∂θn

)T

=

Bmajor∑
b=1

(
∂Lb

∂θn

)T

+

Bminor∑
b=1

(
∂Lb

∂θn

)T

.

(12)

Accordingly, if Bmajor � Bminor, the CML-based method tends

to overlook the gradient computed in certain regions when the

number of channels in those regions is much smaller than in

the region with the majority of users.

2) Distributed Learning: Fig. 1 illustrates the dataset al-

location process and the direction of model transmission.

Following the local epochs, the phase shift matrices Θr′

from various UEs are transmitted to the BS for synchronous

aggregation. Naturally, we aim to aggregate the model across

different Nr′ distributions evenly, thereby alleviating the issue

of ignorance (recall Remark 1) in CML. Motivated by the

objective above, Discat is proposed to concatenate phase shift

matrices of varying sizes Nr′ to form a global model, as

mathematically expressed by

Θcat = [Θ1, ...,Θr′ , ...,ΘR] , (13)

where local models Θr′ from different UEs are combined

along the second dimension. Therefore, Θcat ∈ R

M×
R∑

r′=1

Nr′

denotes the model after aggregation and the Discat codebook

is represented by Wcat. However, the concatenation process

implies invalid information exchange between different local

models for the next communication round. Hence, the global

model is expected to be updated using the same manner as the

local model. Nevertheless, instead of pursuing convergence

like the local updating, minimal global updating cycles are

required when extracting the feature of the global dataset H.

For the next communication round, Θcat is split up at the

columns where it was previously concatenated and returns to

the original sizes before aggregation, which can be regarded

as the inverse process of (13). Then, the partitioned updated

subset Θr′ is broadcasted back to the corresponding UE to

start the local updating of the next communication round. So

far, as concluded in Fig. 2, the complete DL neural network

architecture and aggregation strategies have been introduced.

The next part will elucidate how DL enables online learning.

3) Online Learning: As for practicality, it has been stated

in [6] that offline learning feature of supervised CML in

BS is its main drawback. That is to say, it is impractical

to wait for the time-consuming convergence of the model at

BS and not utilize the evolving codebooks during updating.

From a trade-off perspective, although DL introduces a higher

communication overhead, it alleviates the BS’s computation-

al load. This, in return, allows the BS to deal with other

communication tasks during the time-consuming UE update

phases. Meanwhile, there is no need to collect all the channel

data in advance to construct H. Actually, the hk can be

collected, classified and sent to the corresponding UEs with

local models in each communication round, thus realizing the

online-classification. Furthermore, the new environmentally

adapted codebook constructed in each communication round

can be used for collecting more channel state information for

the global and local datasets or performing other tasks in BS,

the same as the concept of online learning as discussed in [6].

Remark 2: The DL-based methods effectively address the

limitation of the batch-based gradient. When considering the

updating process of a phase shift matrix Θ ∈ R
M×N , the



Fig. 2. The neural network architecture and the model aggregation strategies.

improvement of the minority users’ SNR through updating

can be quantified by the contribution of Hminor to the total

gradient in a given model, i.e.,

GCML � gBminor
(θn)

gB (θn)
=

Bminor∑
b=1

(
∂Lb

∂θn

)T

B∑
b=1

(
∂Lb

∂θn

)T
, (14)

where G is the proportion of the gradient calculated from

Hminor in the total gradient LB . For comparison, if we consider

a UE model updating process for the minority subset, G of

Discat is given as

GDiscat =
gBminor

(θn)

gBminor
(θn)

= 1, (15)

Obviously, GDiscat > GCML when B � Bminor in the assumed

scenario (recall Remark 1). Therefore, it is found that in

the proposed methods, the minority of the users makes a

greater contribution to the ultimate gradient. Hence, the SNR

improvement of the minority is ensured, compared with the

CML solution.

TABLE I
HYPER-PARAMETER FOR CHANNEL GENERATION

AND MODEL TRAINING INSTANCE

Parameter Value Parameter Value
Wavelength λ [1mm, 10mm] UE learning epoch 5

Number of antennas 64 BS learning epoch 1

Angle spread 5◦ UE batch size 100
Type of PDF Laplacian PDF BS batch size 5000

Antenna spacing d λ/2 UE learning rate schedule 0.1,0.01

Number of paths 5 BS learning rate schedule 0.01
Number of subareas 10 Validation rate of UEs 0.1

Active UE 4 Validation rate of BS 0.1

V. SIMULATION RESULT

A. Experimental Settings

In order to assess the effectiveness of the DL method in

handling the imbalance of H, a scenario with 10 subregions

is selected. The AOAs of h ∈ H are confined within the

range Ψ = [0, π), and Ψ is subdivided into 10 non-overlapping
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equally-spaced subregions. The clustered AOAs of the gener-

ated channels, within the nth subregion, follow a Laplacian

distribution with the same mean angle. Specifically, the mean

angle of AOA in area n falls in the interval [ π10 (n− 1), π
10n).

A total of 10000 realizations of h are generated in area 10,

which represents the majority of users, while 50 realizations

of h in each area of 1,3,4,5 stand for the minority group-

s.Table I lists the additional hyper-parameters used for channel

generation. The averaged achievable rate for all candidate

users is represented as R = 1
K

K∑
k=1

log2

(
1 +

Pak

σ2

∣∣w†
υk
hk

∣∣2)
and the term Pak

/σ2 is set as ρ (recall (3)). Furthermore,

to evaluate the performance of the proposed method, it is

compared with the N -beam DFT codebook constructed as

wDFT
n = 1√

M
[1, ..., ej

2πn
M , ..., ej

2πn(M−1)
M ]T , n = 0, 1, ..., N−1

and the self-supervised CML solution in the prior work [6].

The equal-gain combining vector wegc is modeled as wegc =
1√
M

[
ej∠h1 , ej∠h2 , . . ., ej∠hM

]T
, where the upper bound of

received power for each user is given as p =
∣∣w†

egch
∣∣2 =

1
M ‖h‖21. A parameter example for learning is also shown in

Table I. For the DL-based solution, 4 UEs are activated and the

codebooks sizes of different UEs are kept consistent. Besides,

the UE validation sets comprise the BS validation set .
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B. Performance Analysis
1) Pre-classification Result: As it was previously noted in

subsection A, when generating the dataset, area 10 contains

10,000 realizations, whereas the remaining regions have 200

realizations. After pre-classification simulation, the channel

sets H1, H3, H4, and H10 contained 48, 69, 124, and 9959

channels, respectively. Therefore, 9959 of the channels are

identified as Hmajor and 241 as Hminor. This result indicates

that none ideal conditions such as limited subarea division

and angle spacing preclude accurate classification but the

difference between Hmajor and Hminor can still be distinguished.

2) Achievable Rate Comparison: Fig. 3 presents the av-

erage achievable rate against the number of beams of the

codebook when ρ is set as 0 dB and 5 dB, with the EGC

receiver as the upper bound. From the experiment, larger

codebook sizes correspond to higher gains and achievable

rates, which suggests superior environmental adaptivity. As for

the performance of the proposed Discat method, it achieves

a higher achievable rate than the CML method (except for

64-beam). Particularly, when the codebook size is small, the

method exhibits better adaptation to the uneven user distri-

bution, which is consistent with the analysis in Remark 1.

This result signifies a significant reduction in beam training

overhead. For instance, when the codebook size is 16, the

proposed method shows similar performance to the 32-beam

DFT codebook, while the CML method falls behind.

3) Convergence of the DL Solution: Convergence is vital

for distributed learning. Here, Fig. 4 plots the loss of CML

versus the normalized iteration which contains 83 updating cy-

cles (same as the number of UE cycles in one communication

round) and the valid loss of DL versus the communication

round. As for the CML solution, it almost reaches saturation

during the first normalized iteration. After that, the valid loss

even increases with the oscillatory behavior. In contrast, the

Discat method achieves convergence slower, which is close

to saturation in the 20th communication round. However, the

performance is better than CML.

4) Beam Pattern Analysis: Fig. 5 illustrates the multiple

beam patterns generated from two learned codebooks. These

patterns depict the learning outcomes of the proposed and

previous methods. The CML codebook beam magnitudes of

minority groups of channels in areas 1, 3, 4, and 5 aren’t

elevated significantly after updating. In contrast, the DL-based

method adapts a single-cluster multipath scenario with multi-

lobe beams or directly aligns with the orientation of the

minority with a magnitude greater than 0.8.

VI. CONCLUSION

In this paper, we proposed a DL framework to address

the codebook design problem in mmWave massive MIMO

communication systems with uneven user distribution. The

proposed framework addressed the issue of neglecting mi-

nority users in the CML-based codebook design problem

and enhanced the adaptivity of the neural network-based

beam codebook design. Moreover, DL was capable of online

learning by sharing the computation burden with UEs. In the

initial part of our method, we classified user channel sets

H based on the power responses of the featured combining

vectors from different subregions, resulting in the attainment of

R subsets. Then, we devised a novel DL architecture to process

all the pre-classified subsets. In terms of model aggregation,

we proposed Discat for cases with different UE codebook

sizes. The DL framework captured channel characteristics of

the minority and showed superiority over the traditional CML

method in terms of achievable rate. In future work, we plan to

further extend a more communication-efficient DL approach

to encompass the terahertz communication system and apply

it to hybrid precoding design.
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