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Abstract—In this paper, we investigate the association problem
between access points (APs) and users in cell-free massive
multiple-input multiple-output (MIMO) systems. To address the
limitations of received signal reference power (RSRP) based
user-centric approach, we develop a deep reinforcement learning
(DRL) approach with graph convolutional networks (GCN) to
extract pertinent features encompassing connection status and
topological information. The relative positioning of nodes is
encoded within an adjacency matrix, while the connection states
are captured within a feature matrix. Our empirical results
validate the efficacy of the proposed approach, which consistently
outperforms both the baseline method without GCN and the
conventional user-centric approach.

Index Terms—Deep reinforcement learning, cell-free massive
MIMO, AP selection, graph convolutional networks.

I. INTRODUCTION

For beyond fifth-generation (B5G) wireless access technol-
ogy, cell-free massive multiple-input multiple-output (MIMO)
has attracted the attention of researchers due to its high
throughput, reliability, and energy efficiency [1]–[3]. In cell-
free massive MIMO, all access points (APs) cooperate with
each other to serve all users simultaneously by exploiting the
same time-frequency resources. These APs are connected to
a central processing unit (CPU) through a backhaul network
and use conjugate beamforming to transmit data to users.

It is widely recognized that having all APs serve all users
can lead to significant backhaul overhead. To mitigate back-
haul overhead burden and enhance network practicality, one
AP selection approach known as the user-centric approach was
proposed in [4], where each AP only serves the users with the
strongest channels, i.e., the strongest received signal reference
power (RSRP). However, the user-centric approach overlooks
the information of network topology, and might perform inad-
equately in certain topological scenarios. Consider a network
topology where numerous users are situated in close proximity
to one AP. According to user-centric approach, these user will
be connected to the same AP, resulting in insufficient receiving
signal strength and severe intra-AP interference. To enhance
the user-centric approach in such network topologies, the
effective channel gain instead of RSRP is considered during
AP selection process in [5] to reduce intra-AP interference.
Yet it was considered that each user connects to only one AP,
which can be extended to multiple APs.

To leverage the network topology information, machine
learning (ML) approaches like graph neural networks (GNN)
have been proposed to capture the relative position information
between APs and users, which can be effectively transformed
into graph structure. Specifically, graph convolutional net-
works (GCN), as explored in [6], have been employed to
extract features from these graph-shaped inputs in various
machine learning applications. The study in [7] predicted the
potential links between nodes even if the RSRP measurements
of few known set of APs are available to the GNN. However,
it’s worth noting that the performance of supervised learning
is significantly influenced by the quality of labels. The labels
employed in the aforementioned supervised learning method
are still closely tied to suboptimal RSRP, which may pose
challenges in achieving optimal network rates.

Reinforcement learning (RL) is a decision-making process
that learns which choice provides better benefits based on the
experience. In particular, recent studies have proposed deep re-
inforcement learning (DRL) based methods exploiting GNN to
optimize wireless networks. For instance, a centralized channel
allocation scheme was introduced in [8] along with DRL-GCN
framework in wireless local area networks. Another study [9]
adopted a GNN method and policy gradient algorithm for
the network node deployment problem. Additionally, in [10],
researchers proposed a DRL-based solution that utilizes the
underlying graph to learn the weights of GNN for optimal
user-cell association in the Open Radio Access Network (O-
RAN). Nevertheless, the above methods are rarely applied
to cell-free massive MIMO systems. Our previous work [11]
investigated clustering and power control problem in cell-free
massive MIMO, but did not utilize GNN. In summary, the
DRL-GNN based framework represents a promising direction
for addressing the AP selection problem due to its effective-
ness in function approximation and graph feature extraction.

In this work, we consider the problem of AP selection
in cell-free massive MIMO systems. For better fairness, the
objective is to maximize average throughput of the lower
portion of users rather than focusing solely on the sum rate.
We develop a GCN-based deep Q-network (DQN) framework
that captures the latent association between APs and users. The
key contributions of this paper are summarized as follows:

• We propose a GCN-DQN based approach which can
be utilized to problems with graph-shaped states. Only
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large-scale fading coefficients are considered in adjacency
matrix and connection status is represented in feature
matrix.

• Upon comparing proposed GCN-baesd method to simple
neural networks based benchmark, we find that it outper-
forms baselines because of GCN’s advantage in graph.

The rest of the paper is organized as follows. Section II
describes the system model. The GCN-DQN based method
is proposed in Section III. We provide numerical results and
discussions in Section IV. Finally, Section V concludes the
paper.

Notations: The superscripts ∗ and T denotes conjugate and
transpose. CN (0, σ2) denotes circularly symmetric complex
Gaussian distribution. E{·} denotes the statistical expectation.

II. SYSTEM MODEL

We consider a downlink cell-free massive MIMO network
with M APs and K users (or user equipments, UEs). Let
M and K denote the sets of all APs and UEs, respectively.
APs and UEs are randomly located and each equipped with a
single antenna. All APs connect to a central processing unit
via a backhaul network. APs jointly serve UEs using the same
time-frequency resource. The channel coefficient between the
m-th AP and the k-th UE is modeled as

gmk = (dmk/d0)
−α

hmk, (1)

where dmk is the distance between the m-th AP and the k-th
UE, d0 is the reference distance, α is the path-loss exponent,
and hmk ∼ CN (0, 1) denotes small-scale fading. We model
the relative positional relationship between nodes using a
graph G = (N , E). The edges eij = {i, j} ∈ E of the graph are
connected if and only if the Euclidean distance between them
is smaller than a threshold, i.e., dmax. To represent the graph
G, the adjacency matrix is defined as an (M +K)× (M +K)
matrix A = (Aij) as follows:

Aij =

{
1, if i ̸= j and eij ∈ E ,
0, otherwise.

(2)

Let us define K(m) as the set of users served by the m-th
AP, and M(k) as the set of APs serving the k-th user. Let
the M ×K feature matrix X = (Xmk) represent connection
status, which is given by

Xmk =

{
1, If AP m serves UE k,

0, otherwise.
(3)

We have Xmk = 1 if UE k ∈ K(m) for all m = 1, 2...,M
or AP m ∈ M(k) for all k = 1, 2...,K. We consider that all
UEs are guaranteed to be served but not all APs serve UEs.
Besides, each UE is served by at most N APs, i.e., |M(k)|
does not exceed N . Using conjugate beamforming, the signal
transmitted by the m-th AP can be expressed as

xm =
∑

k∈K(m)

√
ηmkĝ

∗
mkqk, (4)

where qk is the symbol intended for the k-th user and it
satisfies E

{
|qk|2

}
= 1. For simplicity, we assume perfect

channel state information (CSI), i.e., the estimates of channels
are true, ĝmk = gmk,∀m, k. Let Pm denote the transmitted
power by the m-th AP and ηmk denote the power control
coefficients. In this work, we let ηmk = Pm∑

k′∈K(m)|gmk′ |2 . The
corresponding signal received at the k-th UE is given by

yk =

M∑
m=1

gmkxm + wk

=

M∑
m=1

∑
k′∈K(m)

√
ηmk′gmkg

∗
mk′qk′ + wk

=

K∑
k′=1

∑
m∈M(k′)

√
ηmk′gmkg

∗
mk′qk′ + wk

=
∑

m∈M(k)

√
ηmk |gmk|2 qk︸ ︷︷ ︸

desired signal

+

K∑
k′ ̸=k

∑
m∈M(k′)

√
ηmk′gmkg

∗
mk′qk′

︸ ︷︷ ︸
multiuser interference

+wk,

(5)

where wk ∼ CN (0, σ2
w) is the additive noise at the k-th UE.

The downlink Signal-to-Interference plus Noise-Ratio (SINR)
for the k-th UE can be expressed as

γk =

∣∣∣∑m∈M(k)

√
ηmk |gmk|2

∣∣∣2
σ2
w +

∑K
k′ ̸=k

∣∣∣∑m∈M(k′)

√
ηmk′gmkg∗mk′

∣∣∣2 . (6)

The downlink achievable rate for the k-th UE Rk is given by
log2(1 + γk). In this study, to improve the overall throughput
without loss of fairness, we consider the average throughput
of the lower n UEs. Let the n-th lowest throughput among
K UEs be denoted by ξn, then our objection is to maximize
1
n

∑n
l=1 ξl.

III. DEEP Q-LEARNING ALGORITHM

We propose a deep Q-learning approach in which a Q-
function is learned from the graph and connection status. The
action at at time step t is to connect a legal AP-UE pair. Illegal
actions such as connecting the connected pairs or exceeding
the maximum allowable number of connections for any UE
will be masked. The state st at time step t is composed of the
graph adjacency matrix A and the square matrix X, which
can be expressed as

X =

[
0K×K XT

X 0M×M

]
. (7)

The initial state can be considered as partially connected
networks. The terminal state sT is achieved when all the
UEs reach maximum number of connection. The reward rt
is defined as the average throughput of the lower n UEs after
selecting action at, i.e., rt = 1

n

∑n
l=1 ξ

t
l .
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Following policy π, The action-value function represents the
expected accumulative reward of taking action at in state st:

Qπ (st, at) = Eπ [Gt | st, at] = Eπ

[
T−t∑
k=0

γkrt+k | st, at

]
, (8)

where Gt is the cumulative discounted reward and γ is the
discount factor. The optimal policy π∗ is commonly learned
through the estimation of optimal action-value function, which
follows Bellman optimality equation:

Q∗ (st, at) = E
[
rt + γmax

a′
Q∗ (st+1, a

′) | st, at
]
. (9)

Optimal action-value function maximizes cumulative re-
ward, then we can obtain an optimal policy through the
estimation of the optimal action-value function:

Q∗(s, a) = max
π

Qπ(s, a), (10)

π∗(a | s) = argmax
a

Q∗(s, a). (11)

Considering the number of feasible connection states is
extremely high, we adopt neural network to approximate
Q∗(s, a). DQN exploits the main network with parameter θ
and the target network with parameter θ− to ensure conver-
gence. To break the temporal correlation in the training data,
a mini-batch of transitions B will be randomly sampled from
replay buffer D to update the networks. The loss function and
gradient descent are described as follows:

L (θ) = EB

[(
r + γmax

a′
Q
(
s′, a′ | θ−

)
−Q (s, a | θ)

)2
]
, (12)

θ ← θ − αθ∇θL(θ), (13)

where αθ is the learning rate. To balance the exploitation
and exploration, we adopt ϵ-greedy policy while training. The
detailed learning process is summarized in Algorithm 1.

Fig. 1 indicates the overall structure of the GCN-based
network, where “Dense” represents the fully connected layer
and “Graph Convolution” represents the graph convolutional
layer. By incorporating the GCN layers into the neural network
model, we can treat the graph structure of cell-free massive
MIMO in a manner analogous to a convolutional neural
network (CNN) processing an input image. Traditionally,
spectral techniques employ eigen decomposition to produce
node representation vectors. However, these methods suffer
from computational inefficiency and limited generalizability.
GCN effectively addresses these issues through its robust
approximation approach, where the hidden representation in
the l-th layer is updated as follows:

X(l) = σ
(
D̃− 1

2 ÃD̃− 1
2X(l−1)W(l−1)

)
, (14)

where Ã = A+ I and I is the identity matrix. D̃ii =
∑

i Ãij

is the degree matrix and W(l) is the trainable weight matrix
of l-th layer. σ(·) denotes activation function, i.e., ReLU(·) =
max(0, ·) in this work. X(l) is the output matrix of l-th layer
and X(0) = X. This approach normalizes the adjacency matrix
and ensures that information about each node is retained
during the propagation process across different layers. The

Algorithm 1 DQN Procedure
1: Randomly initialize network parameters θ.
2: Initialize target network parameters θ− = θ.
3: Initialize the replay buffer D with capacity D.
4: for episode = 1 to MAX-EPISODE do
5: Set the initial state s1.
6: for t = 1 to T do
7: Execute action at ∼ π(at | st).

8: π (at | st) =

{
random AP-UE pairing, w.p. ϵ
argmax

at

Q (st, at) , o.w.
9: Obtain the reward rt and next state st+1.

10: if |D| < D then
11: Store experience (st, at, rt, st+1) in D.
12: else
13: Replace the old experience by new experience.
14: end if
15: if |D| ≥ |B| then
16: Sample a mini-batch B from D randomly.
17: Calculate target value:

yi =

{
ri, t = T

ri + γmaxa′ Q (si+1, a
′ | θ−) , o.w.

18: Calculate the loss function L(θ):

L(θ) =
1

|B|
∑
bi∈B

(yi −Q(si, ai|θ))2.

19: Update the weights θ:

θ ← θ+αθ

∑
bi∈B

(yi−Q(si, ai|θ))∇θQ(si, ai|θ).

20: end if
21: st ← st+1.
22: end for
23: if episode%τ = 0 then

θ− ← θ.

24: end if
25: end for

hidden dimensions of graph convolution W is 64 and 32 while
the number of neurons in “Dense” is 300.

IV. SIMULATION RESULTS

We consider a network with 10 APs and 5 UEs randomly
distributed in a 1 × 1 km2 square. To reduce the sparse reward
of the GNN-RL inference for better convergence, we divide
UEs into two categories. For the first class of UEs, if the
difference between the strongest and the second strongest
RSRP measurements is more than 3dB, then these UEs are
associated with APs with the strongest RSRP at the beginning
of each episode. The remaining UEs will be associated to
APs during training. We aim at maximizing throughput of the
lowest 3 UEs. We test our algorithm in 30 random scenarios
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Fig. 1. The architecture of the GCN-based network.

with different topology. We train 50000 episodes for each
scenario. The essential parameters are listed in Table I.

TABLE I
SYSTEM PARAMETERS

Parameters Value
Path-loss exponent α 2

distance threshold dmax 200m
Transmit power Pm 10 mW

Noise figure 9 dB
Bandwidth 20 MHz

Discount factor γ 0.99
learning rate αθ 0.1

Update iteration τ 100
Replay buffer capacity D 25000

Batch size B 64
greedy parameter ϵ 0.1

We compare the proposed GCN-DQN method with three
other strategies termed as Dense-DQN, UC and Random.
In the Dense-DQN strategy, “Graph Convolution” layers are
replaced by “Dense” layers while other parameters and algo-
rithm are consistent with GCN-DQN. User-centric approach
[4] is adopted in UC, i.e., each UE is served by N APs with
the top N strongest RSPR. Random association method with
neighboring C APs for each UE is referred as Random. The
numerical results reported in this paper are the average of the
data obtained during the final ten percent of the simulation
time.

Fig. 2 displays the learning curves when N = 2. The
dark solid line represents the average calculated per 100
steps. The result shown in the figure is the terminal state
of training (all UEs are served by 2 APs). It can be seen
that our proposed GCN-DQN method reaches convergence and
outperforms other 3 baselines. Fig. 3 shows final connection
results provided by GCN-DQN, UC and Dense-DQN in the
scenario of Fig. 2. For GCN-DQN, we observe that more APs

Fig. 2. Training process for GCN-DQN and Dense-DQN when N = 2.

are exploited than UC, leading to less intra-AP interference
and more signal strength for each UE. On contrast, Dense-
DQN fails to obtain the optimal solution as UEs seek far from
the near in Fig. 3(c).

Fig. 4 shows the cumulative distribution functions (CDFs)
of different strategies under different maximum connection
numbers. Specifically, “final” denotes that all UEs are fully
served by N APs and “best” represents the optimal value
achieved in the process (UEs may not reach the maximum
number of connection). As indicated in the figure, the average
throughput of the lowest 3 UEs are ranked as GCN-DQN
(best) > GCN-DQN (final) > UC ≥ Dense-DQN (best) >
Dense (final) ≫ Random. When N = 1, the curve for GCN-
DQN (best) basically coincides with GCN-DQN (final) as
terminal states indicate the best status in most cases. As N
increases, the performance gap between “best” and “final”
widens while the performance gap between Dense-DQN and
UC narrows. Moreover, the performance deteriorates for all
methods as N increases. This is because as the loads on
each AP grow, intra-AP interference becomes more severe and
terminal states may not be the best status.

Fig. 5 denotes the average throughput of the lowest 3 UEs,
and we can obtain the same conclusion that as from Fig. 4.
GCN-based model exceeds those of the other methods, and
learning performance exceeds that of the simple neural net-
work model. Overall, GCN-DQN (best) strategy outperforms
UC, Dense-DQN (best) and Random by up to 11.3%, 20.3%
and 210.7% in terms of average throughput of the lowest
3 UEs. These data come to 8.5%, 23.1% and 202.6% when
comparing GCN-DQN (final) with UC, Dense-DQN (final)
and Random, respectively.

V. CONCLUSION

In this paper, we propose a GCN-DQN approach to solve
the AP-UE association problem in cell-free massive MIMO
networks. The simulation results demonstrate that our pro-
posed method outperforms fully connected layer based DQN
and RSRP based user-centric approach. Looking forward, we
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(a) (b) (c)

Fig. 3. A snapshot of a specific scenario when N = 2. Hollow circles and solid triangles represent UEs and APs, respectively. Lines with different colors
indicate different UEs. (a) GCN-DQN. (b) UC. (c) Dense-DQN.
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Fig. 4. CDF for rewards with different N.
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are interested in load balancing and energy efficiency as our
optimization goals.
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