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Abstract—This paper studies the distributed downlink power
control problem in user-centric cell-free systems, where each user
equipment (UE) is served by a subset of access points (APs) to
reduce fronthaul requirements and computational complexity at
the AP side. We propose a distributed downlink power control
method based on a deep neural network (DNN) to enhance
the long-term downlink data rate across the entire network.
This method relies solely on locally collected large-scale fading
information as the DNN input. Also, the method can adapt to
dynamic scenarios with varying numbers of associated UEs while
meeting real-time power control requirements. Simulation results
demonstrate that the proposed scheme outperforms benchmark
approaches in terms of network performance.

Index Terms—Cell-free massive MIMO, distributed wireless
system, deep learning, power control, user-centric network.

I. INTRODUCTION

Cell-free massive MIMO, a key sixth generation (6G)

technology, employs distributed access points (APs) to pro-

vide uniform quality of service (QoS) through cooperative

transmission [1], [2]. While canonical implementations rely

on centralized central processing unit (CPU) coordination [1],

[3], practical limitations emerge as fronthaul/computational

costs scale linearly with user equipment (UE) numbers [4].
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As path loss increases exponentially with the signal transmis-

sion distance, full AP coordination could be unnecessary [5],

motivating user-centric architectures where UEs are served by

localized AP clusters [6]. This approach reduces complexity

while maintaining performance via partial AP cooperation [7].

In cell-free massive MIMO systems, the dense distribution

of APs and UEs leads to a highly interference-prone environ-

ment, where effective power allocation remains critical [8].

Traditional iterative optimization methods [9], [10] suffer from

polynomial complexity growth, while supervised deep neural

network (DNN) approaches [11], [12] depend on computa-

tionally expensive label generation. Although unsupervised

learning eliminates labeling requirements [8], [13], its cen-

tralized implementations lack scalability. Recent distributed

DNN designs [14], [15] address this issue through localized

processing. However, their network design is based on single-

variable optimization, which may limit model performance and

can not achieve global optimal solutions.

In this paper, we propose a distributed DNN architec-

ture employing unsupervised learning for joint multi-variable

power optimization. Our method operates without labeled

training data, using only locally available large-scale fading

information to simultaneously improve the average sum rate

and reduce transmit power.

The remainder of this paper is organized as follows: Section

II introduces the system model and formulates the downlink

power control problem. Section III discusses the design of the

distributed DNN. Section IV presents the numerical evalua-

tions. Finally, Section V concludes this article.

Notation: Throughout this paper, x ∼ CN
(
u, σ2

)
repre-

sents a complex Gaussian random variable with mean u and

variance σ2. |X | denotes the cardinality of set X . IN denotes

the N × N identity matrix. The expectation is denoted by

E [·]. The superscripts (·)∗ and (·)H indicate the conjugate-

transpose and Hermitian transpose, respectively. L2 vector

norm is denoted by ∥·∥. The operator diag (·) represents either

the creation of a diagonal matrix from a given vector or the
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Fig. 1. A cell-free massive MIMO network architecture with user-centric
clustering, where each UE is served by several surrounding APs.

extraction of the diagonal elements of a square matrix as a

vector, depending on its input.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a distributed cell-free architecture with K
single-antenna UEs indexed by the set K and M N -antenna

APs indexed by the set M, uniformly deployed as shown

in Fig. 1 [16]. Each AP connects via fronthaul to an edge

processor (EP), with EPs linked to the CPU through midhaul

connection. This design decentralizes power control to EPs,

but introduces coordination challenges when a UE is served

by APs connected to multiple EPs. For example, in Fig. 1,

AP 1 and AP 2 are connected to EP 1 and EP 2, respectively,

and hence their transmit power can not be fully coordinated,

although they all serve UE 2.

The channel gain between AP m and UE k is modeled as [1]

gm,k = β
1/2
m,khm,k, (1)

where βm,k and hm,k ∼ CN (0, IN ) represent large-scale and

small-scale fadings, respectively. Operating in time division

duplex (TDD) mode with block fading, each coherence block

contains two phases: uplink channel estimation and downlink

data transmission, which are detailed in subsequent sections.

A. Uplink Channel Estimation

In the uplink channel estimation phase, each UE will first

send a pilot signal to APs. Let τp represent the length of each

pilot sequence and the number of pilots in the system. The

pilot sequence sent by UE k, denoted by ϕk ∈ C
τp×1, satisfies

ϕ
H
k ϕj =

{

1, if ϕk = ϕj ,

0, otherwise,
(2)

∀k, j ∈ K. By employing the minimum mean square error

(MMSE) estimator at AP m, the estimate ĝm,k of gm,k and the

estimation error em,k = gm,k − ĝm,k follow the distributions

ĝm,k ∼ CN (0, φm,kβm,kIN ) (3)

and

em,k ∼ CN (0, (1− φm,k)βm,kIN ) , (4)

respectively, where

φm,k =
τpηuβm,k

τpηu
∑K

j=1 βm,j |ϕH
k ϕj |

2 + σ2
(5)

with ηu and σ2 denoting the uplink transmit power of each

UE and the noise power, respectively [17].

B. Downlink Data Transmission

We let Km ⊂ K denote the set of UEs served by AP m.

The maximum ratio (MR) precoding scheme is employed, i.e.,

the normalized precoding vector between UE k and AP m is

wm,k =
ĝm,k

∥ĝm,k∥
. (6)

AP m’s transmitted signal can then be expressed as

xm =
∑

k∈Km
η
1/2
m,kwm,kqk, (7)

where qk, k ∈ K denotes the symbol intended for UE k, which

satisfies E[|qk|
2
] = 1 and E

[
qkq

∗
j

]
= 0, ∀k ̸= j. Additionally,

ηm,k denotes the transmit power assigned to UE k by AP m.

Let Mk ⊂ M represent the set of APs serving UE k. Then

UE k’s received signal is given by

yk =
∑M

m=1 g
H
m,kxm + nk

=
∑

m∈Mk
gH
m,kwm,kη

1/2
m,kqk

︸ ︷︷ ︸

desired signal

+
∑M

m=1 g
H
m,k

∑

k′ ̸=k,k′∈Km
η
1/2
m,k′wm,k′qk′

︸ ︷︷ ︸

multiuser interference

+nk,

(8)

where nk ∼ CN
(
0, σ2

)
is the additive white Gaussian noise

(AWGN). By assuming that each UE has perfect channel state

information (CSI), the signal-to-interference-plus-noise ratio

(SINR) of UE k can be obtained as

SINRk=

∣
∣
∣
∑

m∈Mk
gH
m,kwm,kη

1/2
m,k

∣
∣
∣

2

∑

k′ ̸=k,k′∈K

∣
∣
∣
∑

m∈M′

k
gH
m,kwm,k′η

1/2
m,k′

∣
∣
∣

2

+ σ2

.

(9)

And the instantaneous downlink rate R̃k of UE k is given by1

R̃k = Blog2 (1 + SINRk), [bit/s] (10)

where B is the communication bandwidth. The achievable

average ergodic downlink rate Rk of UE k is written as

Rk = E[R̃k], [bit/s], (11)

where the expectation is taken over the channel realizations.

The average ergodic sum rate is then defined as

R=
∑K

k=1 Rk=B
∑K

k=1 E[log2 (1+SINRk)], [bit/s]. (12)

C. Problem Formulation

In this paper, our objective is to find the optimal downlink

transmit power that maximizes the sum rate under the power

1With channel estimation, the data rate could be corrupted by a constant,
representing the time proportion occupied by uplink pilot transmission. With-
out causing unfair comparison, we omit this overhead to simplify notation.
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Fig. 2. The designed DNN architecture for joint optimization of AP total
transmit power and downlink power allocation.

constraints of each AP based on the channel gains. The sum

rate maximization problem can be expressed as

P1: max
{ηm,k:k∈Km,m∈M}

R

s.t.
∑

k∈Km
ηm,k ≤ Pmax, m ∈ M,

ηm,k ≥ 0, k ∈ Km, m ∈ M,

(13)

where Pmax is the maximum transmit power for each AP. It is

worth noting that UEs that are not served by any APs will be

allocated zero power, and hence we only consider the power

allocation of the UEs in set
⋃

m∈M Km. From (9), we can

see that Problem P1 is non-convex. In any non-trivial setup,

the search for the optimal solution is very complex. Moreover,

since deriving Rk in a closed form is analytically intractable

unless bounds and/or approximations are used [1]. However,

approximations and bounds may fail to precisely capture the

real objective function, resulting in certain performance losses.

This issue can be addressed through the data-driven optimiza-

tion capabilities of deep learning techniques. According to the

universal approximation theorem [18], deep learning can ap-

proximate functions lacking closed-form expressions, making

it a useful tool for solving complex optimization problems.

III. DISTRIBUTED DEEP LEARNING-BASED POWER

CONTROL METHOD

In this section, we propose a distributed DNN framework

to solve Problem P1, mitigating fronthaul overhead from

centralized DNNs and conventional optimization methods.

Each EP employs a dedicated DNN that locally manages

power allocation across its connected APs using local CSI,

with network training conducted via unsupervised learning.

A. Network Design

In the proposed scheme, each EP uses locally collected

large-scale fading information as input to the DNN, captur-

ing key channel propagation and interference characteristics,

which can be practically measured through received signal

strength. No channel gain exchange occurs between EPs,

ensuring scalability. To improve downlink power control, we

design a DNN that jointly optimizes total transmit power

and downlink power allocation, as shown in Fig. 2. This

design can also be extended to deal with other multi-objective

optimization problems by adding output blocks.

The set of local large-scale fading coefficients collected by

EP l is denoted as Bl, and the number of APs connected

to EP l is defined as Ml. To solve Problem P1 using the

DNN approach, we need to find an unknown mapping from

{B1,B2, ...,BL} to the AP total transmit power and downlink

power allocation.

The network design processes across EPs are generally

consistent. In the rest of this subsection, we will take EP l as an

example. For each AP connected to EP l, the collected large-

scale fading coefficients βm,k ∈ Bl need to be pre-processed

before input to the model, as follows:

β̃m,k =
βm,k

∑

i∈Km
βm,i

. (14)

This step accelerates the training process and contributes to the

improved performance of the distributed DNN [11]. The pre-

processed large-scale fading coefficients collected in tensor

Bl ∈ R
Ml×K×T are used as inputs to the model, where T

denotes the number of samples in a batch. It is worth noting

that the dynamic changes in input and output data sizes, caused

by varying AP-UE associations, are addressed by designing

the DNN to accommodate the maximum number of UEs K
supported by the system. In this design, β̃m,k ∈ B

(t)
l , 1 ≤

t ≤ T are set to zero whenever k /∈ Km. Consequently, the

input and output sizes of the DNN are fixed, making them

independent of different AP-UE associations. This allows a

single DNN at each EP to handle scenarios with dynamic AP-

UE service relationships effectively.

The proposed model consists of a feature extraction network

and two parallel output networks. The feature extraction net-

work is composed of multiple convolutional layers to extract

features, where the convolution operation can be expressed as:

C(e) = Conv(B
(t)
l ; {W(e−1), b(e−1)}), (15)

in which Conv (·) represents the convolution operation with

a convolution kernel W
(e−1) using a sliding step of 1 and

zero padding of 1, along with bias b
(e−1). The variable e

represents the epoch index. The convolution block, referred

to as ConvBlock, processes the input as follows:

ConvBlock(B
(t)
l ) = BN

(
δ(C(e))

)
, (16)

where δ (·) denotes the LeakyReLU (LReLU) activating func-

tion, and BN(·) is the batch normalization operation.

The operations of the feature extraction network can be

expressed as:

X(e) = ConvBlock
(
ConvBlock(B

(t)
l )

)

+BN
(
conv

(
B

(e)
l ;{W(e−1),b(e−1)}

))
.

(17)

We design two parallel output networks to learn two deci-

sion variables, respectively used to decide the total transmit

power of APs and the downlink power allocation. These

networks consist of convolution blocks and fully connected

blocks (FCBs), the output of the FCBs can be expressed as:

C(e)
p = δ

(
BN

(
ConvBlock(X(e)); θ(e−1)

p

))
, (18)

C(e)
η = δ

(
BN

(
ConvBlock(X(e)); θ(e−1)

η

))
, (19)

where θ(e−1)
p and θ(e−1)

η are the learned parameters of the

fully connected layers. The network outputs are converted to
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power control coefficients through the sigmoid and softmax

functions in the output layer, respectively. Thus, the outputs

are y(e)
p = sigmoid(C(e)

p ) and Y(e)

η = softmax(C(e)

η ), where

y(e)
p ∈ R

Ml denotes the power control coefficient used for

predicting AP total transmit power, Y(e)

η ∈ R
Ml×K denotes

the power control coefficient used for predicting downlink

power allocation. The choice of the sigmoid and softmax

functions ensures that the outputs comply with the constraints

in Problem P1. Specifically, the sigmoid function limits y(e)
p

to the range (0, 1], thus ensuring that the predicted AP

total transmit power does not exceed the maximum power

constraint. Meanwhile, the softmax function enables each AP

to proportionally allocate its total transmit power among the

UEs it serves. Finally, the downlink transmit power Pl at EP

l of epoch e can be obtained as

P
(e)
l = diag(y(e)p Pmax) · Y(e)

η . (20)

B. Network Training

To maximize the network-wide long-term average ergodic

downlink rate, the DNN at each EP collaboratively minimizes

a common loss function defined as:

Loss = −Eg({βm,k})

[
∑K

k=1 R̃k

(
g({βm,k}),Θ

)]

, (21)

where Θ = {Θ1,Θ2, . . . ,ΘL} denotes the set of training

parameters for DNNs, and g({βm,k}) represents the channel

gains with given large-scale fading coefficients. The expecta-

tion in (21) is averaged over the small-scale fading coefficients.

However, it is challenging to derive its closed-form expression.

To address this issue, we utilize the commonly employed

mini-batch gradient descent method for training the network

[14], [19]. During each training iteration, large-scale fading

information {βm,k} is collected based on the known AP-UE

deployment scenario. Subsequently, T synthetic samples of

channel estimate and channel estimation errors, denoted as

{ǧ(t)}t=1,...,T and {ě(t)}t=1,...,T , respectively, are generated

according to the known distributions in (3) and (4) using

Monte Carlo sampling with given {βm,k} and pilot SINR

{φm,k}. Using these T samples, the loss function (21) can

be approximated as:

Loss ≈− 1
T

∑T
t=1

∑K
k=1 R̃k

(
ǧ(t)({βm,k}, {φm,k}),

ě(t)({βm,k}, {φm,k}),Θ
)
. (22)

The approximate expression in (22) is employed during each

iteration to compute the gradient and update the model pa-

rameters Θ. Via the above approach, the training process effi-

ciently handles the stochastic nature of small-scale fading and

facilitates the network’s long-term performance optimization.

IV. SIMULATION AND NUMERICAL RESULTS

To verify the performance of the proposed scheme, we

conduct simulations in this section.

A. Simulation Setup

We focus on a scenario where APs and UEs are randomly

distributed within a 1000 m × 1000 m square area following

a uniform distribution. We use 4 EPs, each connected to 10

(a) K = 20

(b) K = 10

Fig. 3. CDF of the sum rate. M = 40, K ∈ {10, 20}.

randomly selected APs, with each AP assigned to a single EP.

The number of antennas for each AP is N = 2. The maximum

transmit power per AP Pmax = 1 W, and the uplink transmit

power of pilot signals ηu = 100 mW. The received noise power

σ2 is set to −94 dBm. We normalize the bandwidth B to unity.

The large-scale fading between AP m and UE k is [20]

βm,k = −30.5− 36.7 log10(dm,k/1m) + Fm,k dB, (23)

where dm,k is the distance from UE k to AP m. Fm,k ∼
N

(
0, 42

)
is the shadow fading. The proposed DNN scheme

is trained with M = 40 APs and for K ∈ {10, 20} UEs.

τp = K/2 orthogonal pilots are randomly allocated to each

UE. The method in [7] is introduced for UE association. We

trained the model using the Adam optimizer with a learning

rate of 0.001 on 200,000 samples, split into 90% for training

and 10% for testing, with a batch size of 100. Early stopping

based on test set performance was used to prevent overfitting.

The following approaches are compared:

• Heuristic downlink power control (HDPC) method: This

method, proposed in [11], employs a modified version of

the fully connected network to optimize the power control.

• Fractional power (FP) allocation: The system employs a

scalable power control method proposed in [16], where the

total transmit power of each AP m is fixed at Pmax, and the

downlink power allocation is given by

ηm,k = Pmax ·
βm,k

∑

i∈Km
βm,i

, k ∈ Km. (24)

Fig. 3 shows the cumulative distribution function (CDF) of

the sum rate
∑K

k=1 R̃k. It can be observed that for both K =
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Fig. 4. CDF of the sum rate with different UE association algorithms for
generating training and test data. M = 40, K = 20.

TABLE I
AVERAGE TRANSMIT POWER PER AP (M = 40, K = 20)

Method Average transmit power (normalized by Pmax)
Proposed Scheme 31.4%

HDPC 48.7%

FP 100%

10 and K = 20, the proposed scheme consistently outperforms

other benchmark methods, demonstrating its adaptability to

systems with varying numbers of UEs. Furthermore, as the

number of UEs decreases, the per-UE rates achieved by

all methods improve. This phenomenon is attributed to the

reduction in interference as the number of UEs decreases,

resulting in higher per-UE data rates.

In Fig. 4, we generate test data using the association

algorithm from [21] to evaluate the impact of different UE

association algorithms on the proposed scheme. While during

the training phase, the UE association method proposed in

[7] is employed. The results presented in Fig. 4 demonstrate

that the proposed scheme outperforms the two benchmarks.

Despite the different association algorithms used during the

training and testing phases, the proposed scheme effectively

adapts to the varying association conditions encountered dur-

ing testing, confirming its robustness.

Table I illustrates the average transmit power per AP
1
M

∑M
m=1

∑

k∈Km
ηm,k for different methods under M = 40,

K = 20. The proposed scheme can, on average, reduce the

transmit power by 17.9% and 68.6% compared to the HDPC

method and the FP schemes, respectively. The result shows

that the proposed method can not only achieve higher data

rates but also incur lower power overhead, demonstrating its

superiority in improving the overall network performance.

V. CONCLUSION

In this paper, we propose a distributed downlink power

control method based on DNN to improve the network-wide

performance of a cell-free massive MIMO system. It jointly

optimizes each AP’s total transmit power and their downlink

power allocation to their respective serving UEs, using only

local large-scale fading information as input for the DNN.

This eliminates the need for frontend information exchange,

allowing power control tasks to be independently completed

on each EP. Simulation results validate the effectiveness of

our proposed schemes. Furthermore, our power control scheme

effectively adapts to the dynamic service relationships between

APs and UEs induced by different UE association algorithms,

demonstrating its generalization and robustness.
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